Basic info
model based Salesforce/codegen-350M-mono
fine-tuned with data codeparrot/github-code-clean
data filter by python
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
model_type = 'kdf/python-docstring-generation'
tokenizer = AutoTokenizer.from_pretrained(model_type)
model = AutoModelForCausalLM.from_pretrained(model_type)
inputs = tokenizer('''<|endoftext|>
def load_excel(path):
return pd.read_excel(path)
# docstring
"""''', return_tensors='pt')
doc_max_length = 128
generated_ids = model.generate(
**inputs,
max_length=inputs.input_ids.shape[1] + doc_max_length,
do_sample=False,
return_dict_in_generate=True,
num_return_sequences=1,
output_scores=True,
pad_token_id=50256,
eos_token_id=50256 # <|endoftext|>
)
ret = tokenizer.decode(generated_ids.sequences[0], skip_special_tokens=False)
print(ret)
Prompt
You could give model a style or a specific language, for example:
inputs = tokenizer('''<|endoftext|>
def add(a, b):
return a + b
# docstring
"""
Calculate numbers add.
Args:
a: the first number to add
b: the second number to add
Return:
The result of a + b
"""
<|endoftext|>
def load_excel(path):
return pd.read_excel(path)
# docstring
"""''', return_tensors='pt')
doc_max_length = 128
generated_ids = model.generate(
**inputs,
max_length=inputs.input_ids.shape[1] + doc_max_length,
do_sample=False,
return_dict_in_generate=True,
num_return_sequences=1,
output_scores=True,
pad_token_id=50256,
eos_token_id=50256 # <|endoftext|>
)
ret = tokenizer.decode(generated_ids.sequences[0], skip_special_tokens=False)
print(ret)
inputs = tokenizer('''<|endoftext|>
def add(a, b):
return a + b
# docstring
"""
计算数字相加
Args:
a: 第一个加数
b: 第二个加数
Return:
相加的结果
"""
<|endoftext|>
def load_excel(path):
return pd.read_excel(path)
# docstring
"""''', return_tensors='pt')
doc_max_length = 128
generated_ids = model.generate(
**inputs,
max_length=inputs.input_ids.shape[1] + doc_max_length,
do_sample=False,
return_dict_in_generate=True,
num_return_sequences=1,
output_scores=True,
pad_token_id=50256,
eos_token_id=50256 # <|endoftext|>
)
ret = tokenizer.decode(generated_ids.sequences[0], skip_special_tokens=False)
print(ret)
- Downloads last month
- 68
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.