Edit model card

smolm-autoreg-bpe-counterfactual_babylm_aann_low_variability_numeral-1e-3

This model was trained from scratch on the kanishka/counterfactual_babylm_aann_low_variability_numeral dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4341
  • Accuracy: 0.4098

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 32000
  • num_epochs: 20.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.6001 1.0 18593 3.7711 0.3593
3.383 2.0 37186 3.6063 0.3805
3.2545 3.0 55779 3.4785 0.3921
3.1841 4.0 74372 3.4519 0.3980
3.128 5.0 92965 3.4033 0.4010
3.0818 6.0 111558 3.4102 0.4041
3.0463 7.0 130151 3.3928 0.4052
3.0171 8.0 148744 3.3537 0.4073
2.9883 9.0 167337 3.3732 0.4075
2.9627 10.0 185930 3.3831 0.4084
2.9352 11.0 204523 3.3770 0.4089
2.9164 12.0 223116 3.3897 0.4088
2.8914 13.0 241709 3.3744 0.4094
2.8738 14.0 260302 3.3724 0.4098
2.8534 15.0 278895 3.3984 0.4100
2.8347 16.0 297488 3.4039 0.4097
2.8177 17.0 316081 3.4102 0.4099
2.7952 18.0 334674 3.4160 0.4098
2.7803 19.0 353267 3.4237 0.4099
2.7629 20.0 371860 3.4341 0.4098

Framework versions

  • Transformers 4.38.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.2
Downloads last month
6
Safetensors
Model size
97.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train kanishka/smolm-autoreg-bpe-counterfactual_babylm_aann_low_variability_numeral-1e-3

Evaluation results

  • Accuracy on kanishka/counterfactual_babylm_aann_low_variability_numeral
    self-reported
    0.410