Edit model card

smolm-autoreg-bpe-counterfactual-babylm-keys_to_pipps_2913-1e-3

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3564
  • Accuracy: 0.4106

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 32000
  • num_epochs: 20.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.6052 1.0 18629 3.7008 0.3603
3.3934 2.0 37258 3.4882 0.3819
3.261 3.0 55887 3.4100 0.3927
3.1793 4.0 74516 3.3695 0.3987
3.1256 5.0 93145 3.3170 0.4025
3.0813 6.0 111774 3.3176 0.4054
3.0435 7.0 130403 3.3097 0.4068
3.0127 8.0 149032 3.3222 0.4076
2.9872 9.0 167661 3.2991 0.4085
2.9646 10.0 186290 3.2921 0.4099
2.9347 11.0 204919 3.3166 0.4099
2.9194 12.0 223548 3.3042 0.4112
2.8968 13.0 242177 3.3127 0.4103
2.8738 14.0 260806 3.3203 0.4110
2.8528 15.0 279435 3.3126 0.4112
2.8322 16.0 298064 3.3313 0.4112
2.817 17.0 316693 3.3349 0.4111
2.7973 18.0 335322 3.3472 0.4105
2.7825 19.0 353951 3.3492 0.4107
2.7582 20.0 372580 3.3564 0.4106

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.14.1
Downloads last month
13
Safetensors
Model size
97.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.