electra-base-discriminator-ner-food-combined-v2
This model is a fine-tuned version of google/electra-base-discriminator on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1277
- Precision: 0.8006
- Recall: 0.8959
- F1: 0.8456
- Accuracy: 0.9685
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.45 | 400 | 0.1279 | 0.7429 | 0.8888 | 0.8093 | 0.9603 |
0.2005 | 0.9 | 800 | 0.1306 | 0.8145 | 0.8901 | 0.8506 | 0.9704 |
0.1305 | 1.35 | 1200 | 0.1197 | 0.7847 | 0.8951 | 0.8363 | 0.9667 |
0.1143 | 1.8 | 1600 | 0.1118 | 0.7876 | 0.8922 | 0.8366 | 0.9661 |
0.1169 | 2.25 | 2000 | 0.1125 | 0.7724 | 0.8959 | 0.8296 | 0.9647 |
0.1169 | 2.7 | 2400 | 0.1167 | 0.7964 | 0.8922 | 0.8415 | 0.9674 |
0.1007 | 3.15 | 2800 | 0.1222 | 0.8170 | 0.8905 | 0.8522 | 0.9708 |
0.1008 | 3.6 | 3200 | 0.1164 | 0.7732 | 0.8913 | 0.8281 | 0.9640 |
0.0973 | 4.04 | 3600 | 0.1190 | 0.8093 | 0.8993 | 0.8519 | 0.9697 |
0.0948 | 4.49 | 4000 | 0.1221 | 0.7977 | 0.8947 | 0.8434 | 0.9676 |
0.0948 | 4.94 | 4400 | 0.1220 | 0.8009 | 0.8993 | 0.8472 | 0.9684 |
0.0857 | 5.39 | 4800 | 0.1292 | 0.8085 | 0.8963 | 0.8501 | 0.9694 |
0.0845 | 5.84 | 5200 | 0.1318 | 0.8236 | 0.8943 | 0.8575 | 0.9710 |
0.0877 | 6.29 | 5600 | 0.1246 | 0.7940 | 0.8972 | 0.8425 | 0.9674 |
0.0825 | 6.74 | 6000 | 0.1277 | 0.8006 | 0.8959 | 0.8456 | 0.9685 |
Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.