Back to all models
Model: google/electra-base-discriminator

Monthly model downloads

google/electra-base-discriminator google/electra-base-discriminator
- downloads
last 30 days

pytorch

tf

Contributed by

Google AI company
2 team members · 32 models

How to use this model directly from the 🤗/transformers library:

			
Copy model
tokenizer = AutoTokenizer.from_pretrained("google/electra-base-discriminator") model = AutoModelWithLMHead.from_pretrained("google/electra-base-discriminator")

ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA is a new method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a GAN. At small scale, ELECTRA achieves strong results even when trained on a single GPU. At large scale, ELECTRA achieves state-of-the-art results on the SQuAD 2.0 dataset.

For a detailed description and experimental results, please refer to our paper ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators.

This repository contains code to pre-train ELECTRA, including small ELECTRA models on a single GPU. It also supports fine-tuning ELECTRA on downstream tasks including classification tasks (e.g,. GLUE), QA tasks (e.g., SQuAD), and sequence tagging tasks (e.g., text chunking).

How to use the discriminator in transformers

from transformers import ElectraForPreTraining, ElectraTokenizerFast
import torch

discriminator = ElectraForPreTraining.from_pretrained("google/electra-base-discriminator")
tokenizer = ElectraTokenizerFast.from_pretrained("google/electra-base-discriminator")

sentence = "The quick brown fox jumps over the lazy dog"
fake_sentence = "The quick brown fox fake over the lazy dog"

fake_tokens = tokenizer.tokenize(fake_sentence)
fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt")
discriminator_outputs = discriminator(fake_inputs)
predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2)

[print("%7s" % token, end="") for token in fake_tokens]

[print("%7s" % int(prediction), end="") for prediction in predictions.tolist()]