File size: 10,515 Bytes
305a42c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
#include <sycl/sycl.hpp>
#include "wkv.hpp"

constexpr int WKV_BLOCK_SIZE = 64;  // Matching CUDA_WKV_BLOCK_SIZE

// Helper function for the main kernel
template <int block_size>
static void rwkv_wkv6_f32_kernel(
    const int B, const int T, const int C, const int H,
    const float* k, const float* v, const float* r,
    const float* tf, const float* td, const float* s,
    float* dst, const sycl::nd_item<3>& item_ct1, float* shared_mem) {

    const int tid = item_ct1.get_local_id(2);
    const int bid = item_ct1.get_group(2);

    const int head_size = block_size;
    const int batch_i = bid / H;
    const int head_i = bid % H;
    const int state_size = C * head_size;
    const int n_seq_tokens = T / B;

    // Set up shared memory pointers
    float* _k = shared_mem;
    float* _r = _k + head_size;
    float* _tf = _r + head_size;
    float* _td = _tf + head_size;

    // Local state array
    float state[block_size];

    // Load initial state
    #pragma unroll
    for (int i = 0; i < head_size; i++) {
        state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid];
    }

    // Sync threads before shared memory operations
    item_ct1.barrier(sycl::access::fence_space::local_space);

    // Load time-mixing parameters
    _tf[tid] = tf[head_i * head_size + tid];
    item_ct1.barrier(sycl::access::fence_space::local_space);

    // Main sequence processing loop
    for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid;
         t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid;
         t += C) {

        item_ct1.barrier(sycl::access::fence_space::local_space);

        // Load current timestep data to shared memory
        _k[tid] = k[t];
        _r[tid] = r[t];
        _td[tid] = td[t];

        item_ct1.barrier(sycl::access::fence_space::local_space);

        const float _v = v[t];
        float y = 0;

        // Process in chunks of 4 for better vectorization
        sycl::float4 k4, r4, tf4, td4, s4;
        #pragma unroll
        for (int j = 0; j < head_size; j += 4) {
            // Load data in vec4 chunks
            k4 = sycl::float4(_k[j], _k[j+1], _k[j+2], _k[j+3]);
            r4 = sycl::float4(_r[j], _r[j+1], _r[j+2], _r[j+3]);
            tf4 = sycl::float4(_tf[j], _tf[j+1], _tf[j+2], _tf[j+3]);
            td4 = sycl::float4(_td[j], _td[j+1], _td[j+2], _td[j+3]);
            s4 = sycl::float4(state[j], state[j+1], state[j+2], state[j+3]);

            // Compute key-value product
            sycl::float4 kv4 = k4 * _v;

            // Accumulate weighted sum
            y += sycl::dot(r4, tf4 * kv4 + s4);

            // Update state
            s4 = s4 * td4 + kv4;

            // Store updated state
            state[j] = s4.x();
            state[j+1] = s4.y();
            state[j+2] = s4.z();
            state[j+3] = s4.w();
        }

        dst[t] = y;
    }

    // Save final state
    #pragma unroll
    for (int i = 0; i < head_size; i++) {
        dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i];
    }
}

template <int block_size>
static void rwkv_wkv7_f32_kernel(
    const int B, const int T, const int C, const int H,
    const float* r, const float* w, const float* k, const float* v,
    const float* a, const float* b, const float* s,
    float* dst, const sycl::nd_item<3>& item_ct1, float* shared_mem) {

    const int tid = item_ct1.get_local_id(2);
    const int bid = item_ct1.get_group(2);

    const int head_size = block_size;
    const int batch_i = bid / H;
    const int head_i = bid % H;
    const int state_size = C * head_size;
    const int n_seq_tokens = T / B;

    float* _r = shared_mem;
    float* _w = _r + head_size;
    float* _k = _w + head_size;
    float* _a = _k + head_size;
    float* _b = _a + head_size;

    float state[block_size];

    #pragma unroll
    for (int i = 0; i < head_size; i++) {
        state[i] = s[batch_i * state_size + head_i * head_size * head_size + tid * head_size + i];
    }

    for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid;
         t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid;
         t += C) {

        item_ct1.barrier(sycl::access::fence_space::local_space);

        _r[tid] = r[t];
        _w[tid] = w[t];
        _k[tid] = k[t];
        _a[tid] = a[t];
        _b[tid] = b[t];

        item_ct1.barrier(sycl::access::fence_space::local_space);

        const float _v = v[t];
        float y = 0, sa = 0;
        sycl::float4 a4, s4;

        #pragma unroll
        for (int j = 0; j < head_size; j += 4) {
            a4 = sycl::float4(_a[j], _a[j+1], _a[j+2], _a[j+3]);
            s4 = sycl::float4(state[j], state[j+1], state[j+2], state[j+3]);
            sa += sycl::dot(a4, s4);
        }

        sycl::float4 r4, w4, k4, b4;
        #pragma unroll
        for (int j = 0; j < head_size; j += 4) {
            r4 = sycl::float4(_r[j], _r[j+1], _r[j+2], _r[j+3]);
            w4 = sycl::float4(_w[j], _w[j+1], _w[j+2], _w[j+3]);
            k4 = sycl::float4(_k[j], _k[j+1], _k[j+2], _k[j+3]);
            b4 = sycl::float4(_b[j], _b[j+1], _b[j+2], _b[j+3]);
            s4 = sycl::float4(state[j], state[j+1], state[j+2], state[j+3]);

            sycl::float4 kv4 = k4 * _v;

            s4 = s4 * w4 + kv4 + sa * b4;
            y += sycl::dot(r4, s4);

            state[j] = s4.x();
            state[j+1] = s4.y();
            state[j+2] = s4.z();
            state[j+3] = s4.w();
        }

        dst[t] = y;
    }

    #pragma unroll
    for (int i = 0; i < head_size; i++) {
        dst[T * C + batch_i * state_size + head_i * head_size * head_size + tid * head_size + i] = state[i];
    }
}

void ggml_sycl_op_rwkv_wkv6(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/6);
    const float* k_d = (const float*)dst->src[0]->data;
    const float* v_d = (const float*)dst->src[1]->data;
    const float* r_d = (const float*)dst->src[2]->data;
    const float* tf_d = (const float*)dst->src[3]->data;
    const float* td_d = (const float*)dst->src[4]->data;
    const float* s_d = (const float*)dst->src[5]->data;
    float* dst_d = (float*)dst->data;

    const int64_t B = dst->src[5]->ne[1];
    const int64_t T = dst->src[0]->ne[2];
    const int64_t C = dst->ne[0];
    const int64_t H = dst->src[0]->ne[1];

    GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32);
    GGML_ASSERT(C % H == 0);
    GGML_ASSERT(C / H == WKV_BLOCK_SIZE || C / H == WKV_BLOCK_SIZE * 2); // The current sycl kernel is designed for RWKV6, HEAD_SIZE == 64

    dpct::queue_ptr stream = ctx.stream();

    // Calculate execution configuration
    const size_t shared_mem_size = C / H * 4 * sizeof(float); // For k, r, tf, td
    sycl::range<3> block_dims(1, 1, C / H);
    sycl::range<3> grid_dims(1, 1, B * H);

    // Submit kernel
    if (C / H == WKV_BLOCK_SIZE) {
        sycl_launch(stream, [&](sycl::handler & cgh) {
            sycl::local_accessor<float, 1> shared_mem_acc(shared_mem_size, cgh);

            sycl_parallel_for(
                cgh, sycl::nd_range<3>(grid_dims * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) {
                    rwkv_wkv6_f32_kernel<WKV_BLOCK_SIZE>(
                        B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d,
                        item_ct1, (float*)shared_mem_acc.get_multi_ptr<sycl::access::decorated::no>().get()
                    );
                });
        });
    } else {
        sycl_launch(stream, [&](sycl::handler & cgh) {
            sycl::local_accessor<float, 1> shared_mem_acc(shared_mem_size, cgh);

            sycl_parallel_for(
                cgh, sycl::nd_range<3>(grid_dims * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) {
                    rwkv_wkv6_f32_kernel<WKV_BLOCK_SIZE * 2>(
                        B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d,
                        item_ct1, (float*)shared_mem_acc.get_multi_ptr<sycl::access::decorated::no>().get()
                    );
                });
        });
    }
}

void ggml_sycl_op_rwkv_wkv7(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/7);
    const float* r_d = (const float*)dst->src[0]->data;
    const float* w_d = (const float*)dst->src[1]->data;
    const float* k_d = (const float*)dst->src[2]->data;
    const float* v_d = (const float*)dst->src[3]->data;
    const float* a_d = (const float*)dst->src[4]->data;
    const float* b_d = (const float*)dst->src[5]->data;
    const float* s_d = (const float*)dst->src[6]->data;
    float* dst_d = (float*)dst->data;

    const int64_t B = dst->src[6]->ne[1];
    const int64_t T = dst->src[0]->ne[2];
    const int64_t C = dst->ne[0];
    const int64_t H = dst->src[0]->ne[1];

    GGML_ASSERT(dst->src[6]->type == GGML_TYPE_F32);
    GGML_ASSERT(C % H == 0);
    GGML_ASSERT(C / H == WKV_BLOCK_SIZE || C / H == WKV_BLOCK_SIZE * 2);

    dpct::queue_ptr stream = ctx.stream();

    // Calculate execution configuration
    const size_t shared_mem_size = C / H * 5 * sizeof(float); // For r, w, k, a, b
    sycl::range<3> block_dims(1, 1, C / H);
    sycl::range<3> grid_dims(1, 1, B * H);

    // Submit kernel
    if (C / H == WKV_BLOCK_SIZE) {
        sycl_launch(stream, [&](sycl::handler & cgh) {
            sycl::local_accessor<float, 1> shared_mem_acc(shared_mem_size, cgh);

            sycl_parallel_for(
                cgh, sycl::nd_range<3>(grid_dims * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) {
                    rwkv_wkv7_f32_kernel<WKV_BLOCK_SIZE>(
                        B, T, C, H, r_d, w_d, k_d, v_d, a_d, b_d, s_d, dst_d,
                        item_ct1, (float*)shared_mem_acc.get_multi_ptr<sycl::access::decorated::no>().get()
                    );
                });
        });
    } else {
        sycl_launch(stream, [&](sycl::handler & cgh) {
            sycl::local_accessor<float, 1> shared_mem_acc(shared_mem_size, cgh);

            sycl_parallel_for(
                cgh, sycl::nd_range<3>(grid_dims * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) {
                    rwkv_wkv7_f32_kernel<WKV_BLOCK_SIZE * 2>(
                        B, T, C, H, r_d, w_d, k_d, v_d, a_d, b_d, s_d, dst_d,
                        item_ct1, (float*)shared_mem_acc.get_multi_ptr<sycl::access::decorated::no>().get()
                    );
                });
        });
    }
}