Edit model card

100_randomization_model

This model is a fine-tuned version of t5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6576
  • Bleu: 0.0001
  • Wer: 0.9576
  • Rougel: 0.119
  • Gen Len: 18.9986

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Wer Rougel Gen Len
2.5767 0.16 1000 1.6626 0.0001 0.954 0.1251 18.9985
1.9533 0.32 2000 1.5147 0.0001 0.9524 0.1284 18.9986
1.8318 0.48 3000 1.4392 0.0001 0.9518 0.1297 18.9986
1.7626 0.64 4000 1.3857 0.0001 0.9514 0.1306 18.9986
1.7199 0.8 5000 1.3553 0.0001 0.951 0.1312 18.9988
1.6727 0.96 6000 1.3325 0.0001 0.9507 0.1319 18.9986
1.9628 1.12 7000 1.8528 0.0001 0.9524 0.1293 18.9988
2.9138 1.28 8000 2.6299 0.0001 0.9568 0.1205 18.9986
3.5506 1.44 9000 2.7483 0.0001 0.958 0.1181 18.9987
3.5214 1.6 10000 2.7007 0.0001 0.9578 0.1186 18.9986
3.4669 1.76 11000 2.6699 0.0001 0.9576 0.1189 18.9986
3.4448 1.92 12000 2.6576 0.0001 0.9576 0.119 18.9986

Framework versions

  • Transformers 4.37.1
  • Pytorch 2.3.0.dev20240122+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
7
Safetensors
Model size
223M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jvalline/100_randomization_model

Base model

google-t5/t5-base
Finetuned
(379)
this model