BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("joshuapb/fine-tuned-matryoshka-500")
# Run inference
sentences = [
    'Revision stage: Edit the output to correct content unsupported by evidence while preserving the original content as much as possible. Initialize the revised text $y=x$.\n\n(1) Per $(q_i, e_{ij})$, an agreement model (via few-shot prompting + CoT, $(y, q, e) \\to {0,1}$) checks whether the evidence $e_i$ disagrees with the current revised text $y$.\n(2) Only if a disagreement is detect, the edit model (via few-shot prompting + CoT, $(y, q, e) \\to \\text{ new }y$) outputs a new version of $y$ that aims to agree with evidence $e_{ij}$ while otherwise minimally altering $y$.\n(3) Finally only a limited number $M=5$ of evidence goes into the attribution report $A$.\n\n\n\n\nFig. 12. Illustration of RARR (Retrofit Attribution using Research and Revision). (Image source: Gao et al. 2022)\nWhen evaluating the revised text $y$, both attribution and preservation metrics matter.',
    'What mechanisms does the editing algorithm employ to maintain fidelity to the source material while simultaneously ensuring alignment with the supporting evidence?',
    'What is the impact of constraining the dataset to a maximum of $M=5$ instances on the accuracy and reliability of the attribution report $A$ when analyzing AI-generated content?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.8802
cosine_accuracy@3 0.9688
cosine_accuracy@5 0.9896
cosine_accuracy@10 1.0
cosine_precision@1 0.8802
cosine_precision@3 0.3229
cosine_precision@5 0.1979
cosine_precision@10 0.1
cosine_recall@1 0.8802
cosine_recall@3 0.9688
cosine_recall@5 0.9896
cosine_recall@10 1.0
cosine_ndcg@10 0.9477
cosine_mrr@10 0.9302
cosine_map@100 0.9302

Information Retrieval

Metric Value
cosine_accuracy@1 0.875
cosine_accuracy@3 0.9688
cosine_accuracy@5 0.9948
cosine_accuracy@10 1.0
cosine_precision@1 0.875
cosine_precision@3 0.3229
cosine_precision@5 0.199
cosine_precision@10 0.1
cosine_recall@1 0.875
cosine_recall@3 0.9688
cosine_recall@5 0.9948
cosine_recall@10 1.0
cosine_ndcg@10 0.946
cosine_mrr@10 0.9277
cosine_map@100 0.9277

Information Retrieval

Metric Value
cosine_accuracy@1 0.8802
cosine_accuracy@3 0.9688
cosine_accuracy@5 0.9948
cosine_accuracy@10 1.0
cosine_precision@1 0.8802
cosine_precision@3 0.3229
cosine_precision@5 0.199
cosine_precision@10 0.1
cosine_recall@1 0.8802
cosine_recall@3 0.9688
cosine_recall@5 0.9948
cosine_recall@10 1.0
cosine_ndcg@10 0.9458
cosine_mrr@10 0.9277
cosine_map@100 0.9277

Information Retrieval

Metric Value
cosine_accuracy@1 0.8698
cosine_accuracy@3 0.9844
cosine_accuracy@5 0.9896
cosine_accuracy@10 0.9948
cosine_precision@1 0.8698
cosine_precision@3 0.3281
cosine_precision@5 0.1979
cosine_precision@10 0.0995
cosine_recall@1 0.8698
cosine_recall@3 0.9844
cosine_recall@5 0.9896
cosine_recall@10 0.9948
cosine_ndcg@10 0.944
cosine_mrr@10 0.9265
cosine_map@100 0.9269

Information Retrieval

Metric Value
cosine_accuracy@1 0.8542
cosine_accuracy@3 0.9844
cosine_accuracy@5 0.9948
cosine_accuracy@10 0.9948
cosine_precision@1 0.8542
cosine_precision@3 0.3281
cosine_precision@5 0.199
cosine_precision@10 0.0995
cosine_recall@1 0.8542
cosine_recall@3 0.9844
cosine_recall@5 0.9948
cosine_recall@10 0.9948
cosine_ndcg@10 0.9381
cosine_mrr@10 0.9184
cosine_map@100 0.9186

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.0794 5 5.4149 - - - - -
0.1587 10 4.8587 - - - - -
0.2381 15 3.9711 - - - - -
0.3175 20 3.4853 - - - - -
0.3968 25 3.6227 - - - - -
0.4762 30 3.3359 - - - - -
0.5556 35 2.0868 - - - - -
0.6349 40 2.256 - - - - -
0.7143 45 2.2958 - - - - -
0.7937 50 1.7128 - - - - -
0.8730 55 2.029 - - - - -
0.9524 60 1.9104 - - - - -
1.0 63 - 0.8950 0.9042 0.9039 0.8640 0.8989
1.0317 65 2.5929 - - - - -
1.1111 70 1.4257 - - - - -
1.1905 75 1.9956 - - - - -
1.2698 80 1.5845 - - - - -
1.3492 85 1.7383 - - - - -
1.4286 90 1.4657 - - - - -
1.5079 95 1.8461 - - - - -
1.5873 100 1.8531 - - - - -
1.6667 105 1.6504 - - - - -
1.7460 110 2.7636 - - - - -
1.8254 115 0.7195 - - - - -
1.9048 120 1.2494 - - - - -
1.9841 125 1.7331 - - - - -
2.0 126 - 0.9170 0.9340 0.9167 0.9013 0.9179
2.0635 130 1.1102 - - - - -
2.1429 135 1.8586 - - - - -
2.2222 140 1.4211 - - - - -
2.3016 145 1.9531 - - - - -
2.3810 150 1.9516 - - - - -
2.4603 155 2.1174 - - - - -
2.5397 160 1.7883 - - - - -
2.6190 165 1.4537 - - - - -
2.6984 170 1.3927 - - - - -
2.7778 175 1.2559 - - - - -
2.8571 180 1.8748 - - - - -
2.9365 185 0.7509 - - - - -
3.0 189 - 0.9312 0.9244 0.9241 0.9199 0.9349
3.0159 190 0.947 - - - - -
3.0952 195 1.9463 - - - - -
3.1746 200 1.2077 - - - - -
3.2540 205 0.7721 - - - - -
3.3333 210 1.5633 - - - - -
3.4127 215 1.5042 - - - - -
3.4921 220 1.1531 - - - - -
3.5714 225 1.2408 - - - - -
3.6508 230 0.8085 - - - - -
3.7302 235 1.1195 - - - - -
3.8095 240 1.1843 - - - - -
3.8889 245 0.7176 - - - - -
3.9683 250 1.1715 - - - - -
4.0 252 - 0.9244 0.9287 0.9251 0.9199 0.9300
4.0476 255 1.3187 - - - - -
4.1270 260 0.2891 - - - - -
4.2063 265 1.5887 - - - - -
4.2857 270 1.1227 - - - - -
4.3651 275 1.5385 - - - - -
4.4444 280 0.4732 - - - - -
4.5238 285 1.2039 - - - - -
4.6032 290 1.0755 - - - - -
4.6825 295 1.5345 - - - - -
4.7619 300 1.4255 - - - - -
4.8413 305 1.7436 - - - - -
4.9206 310 0.9408 - - - - -
5.0 315 0.7724 0.9269 0.9277 0.9277 0.9186 0.9302
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.4
  • PyTorch: 2.3.1+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
19
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for joshuapb/fine-tuned-matryoshka-500

Finetuned
(310)
this model

Evaluation results