Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: meta-llama/Llama-2-7b-hf
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
is_llama_derived_model: true

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: utrgvseniorproject/MeditronGuidelines
    type: completion
dataset_prepared_path: /home/josegomez15/med-llm/Llama_Preprocess_MeditronGuideLines_txt
val_set_size: 0.05
output_dir: ./Llama2-7B-MeditronGuideLines-txt-epochs-1-lr-000002

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true

adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:

wandb_project: Llama2-7B-MeditronGuideLines
wandb_entity: utrgvmedai
wandb_watch:
wandb_name: Llama2-7B-MeditronGuideLines-txt-epochs-1-lr-000002
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 1
#saves_per_epoch: 10
save_steps: 800
#save_total_limit: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000002

train_on_inputs: true
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: false
early_stopping_patience:
resume_from_checkpoint: true

local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
flash_attn_cross_entropy: false
flash_attn_rms_norm: true
flash_attn_fuse_qkv: false
flash_attn_fuse_mlp: true

warmup_steps: 2000
evals_per_epoch: 4
eval_table_size:
eval_sample_packing: False
debug:
deepspeed: /home/josegomez15/axolotl/deepspeed_configs/zero2.json
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:

Llama2-7B-MeditronGuideLines-txt-epochs-1-lr-000002

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3911

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 8
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.3307 0.0 1 1.5317
1.4702 0.25 1141 1.4162
1.3621 0.5 2282 1.4039
1.4502 0.75 3423 1.3953
1.4184 1.0 4564 1.3911

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.18.0
  • Tokenizers 0.15.0
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for joseagmz/Llama2-7B-MeditronGuideLines-txt-epochs-1-lr-000002

Finetuned
(589)
this model