Edit model card

resnet101-base_tobacco-cnn_tobacco3482_simkd

This model is a fine-tuned version of bdpc/resnet101-base_tobacco on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 13.1229
  • Accuracy: 0.295
  • Brier Loss: 0.7636
  • Nll: 6.8757
  • F1 Micro: 0.295
  • F1 Macro: 0.1150
  • Ece: 0.2446
  • Aurc: 0.4919

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 1.0 7 0.2512 0.18 0.9617 7.0686 0.18 0.0305 0.3439 0.7810
No log 2.0 14 0.3629 0.18 1.0943 7.0153 0.18 0.0305 0.4345 0.8186
No log 3.0 21 0.4745 0.18 1.1577 6.9805 0.18 0.0305 0.5034 0.8029
No log 4.0 28 0.6953 0.18 1.1290 6.9352 0.18 0.0305 0.4731 0.8367
No log 5.0 35 173.4450 0.18 1.1346 6.8314 0.18 0.0305 0.4615 0.8814
No log 6.0 42 412.7549 0.18 1.1098 6.8364 0.18 0.0305 0.4420 0.8716
No log 7.0 49 148.0839 0.18 1.0291 6.9271 0.18 0.0305 0.3960 0.7698
No log 8.0 56 61.2696 0.18 0.9674 6.9593 0.18 0.0305 0.3413 0.7924
No log 9.0 63 175.4512 0.18 0.9708 6.9854 0.18 0.0305 0.3549 0.8252
No log 10.0 70 139.2036 0.18 0.9400 6.9022 0.18 0.0305 0.3300 0.7760
No log 11.0 77 12.5605 0.295 0.8656 6.9766 0.295 0.1138 0.3093 0.5354
No log 12.0 84 2.3147 0.18 0.9363 6.9778 0.18 0.0305 0.3084 0.7507
No log 13.0 91 75.2050 0.18 0.9543 9.1566 0.18 0.0305 0.2990 0.7716
No log 14.0 98 37.4873 0.18 0.9410 9.1473 0.18 0.0305 0.3029 0.7517
No log 15.0 105 8.5750 0.18 0.9304 9.1440 0.18 0.0305 0.3033 0.7718
No log 16.0 112 21.5310 0.18 0.9232 9.1349 0.18 0.0305 0.3122 0.7717
No log 17.0 119 66.9546 0.18 0.9287 9.1376 0.18 0.0305 0.2920 0.7715
No log 18.0 126 2.6525 0.285 0.8357 7.0773 0.285 0.1143 0.3156 0.5306
No log 19.0 133 7.7253 0.24 0.8574 7.0190 0.24 0.0880 0.2948 0.7186
No log 20.0 140 30.0305 0.285 0.8086 6.9862 0.285 0.1133 0.3001 0.5273
No log 21.0 147 3.9243 0.18 0.8680 7.4799 0.18 0.0306 0.2739 0.7704
No log 22.0 154 4.4660 0.18 0.8831 8.9935 0.18 0.0308 0.2652 0.7313
No log 23.0 161 3.9728 0.18 0.8719 8.9609 0.18 0.0308 0.2600 0.7651
No log 24.0 168 2.6913 0.285 0.8089 6.9969 0.285 0.1146 0.2873 0.5122
No log 25.0 175 1.3141 0.29 0.8086 7.0227 0.29 0.1156 0.3154 0.5256
No log 26.0 182 13.5853 0.29 0.7782 6.8763 0.29 0.1168 0.2735 0.5045
No log 27.0 189 11.9763 0.3 0.7730 6.8499 0.3 0.1171 0.2740 0.4971
No log 28.0 196 1.6467 0.285 0.8067 7.1641 0.285 0.1144 0.2870 0.5193
No log 29.0 203 30.5306 0.285 0.8424 7.1576 0.285 0.1129 0.2686 0.6662
No log 30.0 210 13.5964 0.18 0.8584 7.0972 0.18 0.0305 0.2704 0.7307
No log 31.0 217 98.3061 0.29 0.8274 7.0330 0.29 0.1167 0.3163 0.5653
No log 32.0 224 53.0911 0.29 0.7984 6.9311 0.29 0.1167 0.2911 0.5181
No log 33.0 231 2.2010 0.265 0.8291 6.9883 0.265 0.1037 0.2945 0.6039
No log 34.0 238 3.6255 0.295 0.7836 6.8954 0.295 0.1176 0.2636 0.5025
No log 35.0 245 0.9640 0.3 0.7571 6.7913 0.3 0.1170 0.2388 0.4746
No log 36.0 252 1.1935 0.295 0.7711 6.7993 0.295 0.1175 0.2619 0.4779
No log 37.0 259 12.7465 0.305 0.7650 6.8142 0.305 0.1205 0.2512 0.4798
No log 38.0 266 56.6876 0.305 0.7840 6.8750 0.305 0.1205 0.2835 0.4985
No log 39.0 273 122.6602 0.295 0.7919 6.9220 0.295 0.1116 0.2493 0.5312
No log 40.0 280 14.4685 0.295 0.7757 6.8232 0.295 0.1162 0.2575 0.4988
No log 41.0 287 3.9605 0.295 0.7601 6.7809 0.295 0.1138 0.2437 0.4911
No log 42.0 294 7.9424 0.295 0.7567 6.7609 0.295 0.1138 0.2398 0.4883
No log 43.0 301 17.7810 0.295 0.7713 6.8075 0.295 0.1175 0.2503 0.5090
No log 44.0 308 30.8773 0.295 0.7747 6.8248 0.295 0.1127 0.2651 0.5149
No log 45.0 315 16.3877 0.29 0.7736 6.8888 0.29 0.1117 0.2641 0.5026
No log 46.0 322 7.4195 0.29 0.7674 6.8179 0.29 0.1117 0.2621 0.4991
No log 47.0 329 9.6560 0.295 0.7694 6.8960 0.295 0.1138 0.2604 0.4963
No log 48.0 336 6.6040 0.29 0.7622 6.7835 0.29 0.1117 0.2271 0.4958
No log 49.0 343 10.3365 0.29 0.7640 6.8293 0.29 0.1117 0.2583 0.4941
No log 50.0 350 13.1229 0.295 0.7636 6.8757 0.295 0.1150 0.2446 0.4919

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.2.0.dev20231112+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
8
Safetensors
Model size
42.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jordyvl/resnet101-base_tobacco-cnn_tobacco3482_simkd

Finetuned
(7)
this model