dit_maveriq_tobacco3482_2023-07-04_noaccum

This model is a fine-tuned version of microsoft/dit-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3767
  • Accuracy: 0.95

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 25 1.6738 0.405
No log 2.0 50 1.2848 0.605
No log 3.0 75 0.9015 0.74
No log 4.0 100 0.6159 0.79
No log 5.0 125 0.4341 0.85
No log 6.0 150 0.3338 0.885
No log 7.0 175 0.3210 0.89
No log 8.0 200 0.3121 0.915
No log 9.0 225 0.3235 0.915
No log 10.0 250 0.3003 0.92
No log 11.0 275 0.2602 0.94
No log 12.0 300 0.2892 0.94
No log 13.0 325 0.2865 0.945
No log 14.0 350 0.3103 0.94
No log 15.0 375 0.2959 0.955
No log 16.0 400 0.3026 0.94
No log 17.0 425 0.3082 0.94
No log 18.0 450 0.2951 0.94
No log 19.0 475 0.3310 0.94
0.4279 20.0 500 0.3335 0.95
0.4279 21.0 525 0.3035 0.94
0.4279 22.0 550 0.3155 0.945
0.4279 23.0 575 0.3539 0.945
0.4279 24.0 600 0.3359 0.95
0.4279 25.0 625 0.3887 0.945
0.4279 26.0 650 0.3998 0.935
0.4279 27.0 675 0.4087 0.94
0.4279 28.0 700 0.4065 0.93
0.4279 29.0 725 0.3713 0.935
0.4279 30.0 750 0.3547 0.945
0.4279 31.0 775 0.3757 0.93
0.4279 32.0 800 0.3613 0.945
0.4279 33.0 825 0.3686 0.945
0.4279 34.0 850 0.3254 0.945
0.4279 35.0 875 0.3514 0.95
0.4279 36.0 900 0.3061 0.95
0.4279 37.0 925 0.3339 0.94
0.4279 38.0 950 0.3241 0.955
0.4279 39.0 975 0.2779 0.955
0.029 40.0 1000 0.2788 0.955
0.029 41.0 1025 0.2993 0.95
0.029 42.0 1050 0.3171 0.955
0.029 43.0 1075 0.3340 0.95
0.029 44.0 1100 0.3463 0.955
0.029 45.0 1125 0.3417 0.955
0.029 46.0 1150 0.3377 0.96
0.029 47.0 1175 0.3424 0.945
0.029 48.0 1200 0.3377 0.95
0.029 49.0 1225 0.3731 0.935
0.029 50.0 1250 0.3719 0.95
0.029 51.0 1275 0.3615 0.945
0.029 52.0 1300 0.3473 0.955
0.029 53.0 1325 0.3427 0.945
0.029 54.0 1350 0.4078 0.94
0.029 55.0 1375 0.3763 0.955
0.029 56.0 1400 0.3844 0.945
0.029 57.0 1425 0.3845 0.945
0.029 58.0 1450 0.3976 0.94
0.029 59.0 1475 0.3636 0.95
0.0115 60.0 1500 0.3431 0.95
0.0115 61.0 1525 0.3161 0.955
0.0115 62.0 1550 0.3482 0.945
0.0115 63.0 1575 0.3693 0.945
0.0115 64.0 1600 0.3435 0.95
0.0115 65.0 1625 0.3403 0.955
0.0115 66.0 1650 0.3644 0.95
0.0115 67.0 1675 0.3604 0.955
0.0115 68.0 1700 0.3746 0.945
0.0115 69.0 1725 0.3899 0.94
0.0115 70.0 1750 0.3684 0.95
0.0115 71.0 1775 0.4124 0.94
0.0115 72.0 1800 0.4010 0.95
0.0115 73.0 1825 0.3991 0.95
0.0115 74.0 1850 0.3859 0.95
0.0115 75.0 1875 0.3832 0.96
0.0115 76.0 1900 0.4054 0.955
0.0115 77.0 1925 0.4119 0.955
0.0115 78.0 1950 0.3724 0.955
0.0115 79.0 1975 0.3609 0.95
0.0116 80.0 2000 0.3663 0.955
0.0116 81.0 2025 0.3711 0.955
0.0116 82.0 2050 0.3730 0.955
0.0116 83.0 2075 0.3775 0.955
0.0116 84.0 2100 0.3805 0.96
0.0116 85.0 2125 0.3802 0.96
0.0116 86.0 2150 0.3773 0.96
0.0116 87.0 2175 0.3684 0.955
0.0116 88.0 2200 0.3750 0.95
0.0116 89.0 2225 0.3727 0.945
0.0116 90.0 2250 0.3742 0.945
0.0116 91.0 2275 0.3729 0.945
0.0116 92.0 2300 0.3727 0.945
0.0116 93.0 2325 0.3752 0.95
0.0116 94.0 2350 0.3726 0.945
0.0116 95.0 2375 0.3738 0.945
0.0116 96.0 2400 0.3747 0.945
0.0116 97.0 2425 0.3755 0.945
0.0116 98.0 2450 0.3757 0.95
0.0116 99.0 2475 0.3764 0.95
0.0061 100.0 2500 0.3767 0.95

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1.post200
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.