dit_maveriq_tobacco3482_2023-07-04

This model is a fine-tuned version of microsoft/dit-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2641
  • Accuracy: 0.955

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.96 3 2.0434 0.265
No log 1.96 6 1.9976 0.31
No log 2.96 9 1.7970 0.335
No log 3.96 12 1.6899 0.385
No log 4.96 15 1.6519 0.36
No log 5.96 18 1.5378 0.42
No log 6.96 21 1.4401 0.51
No log 7.96 24 1.3607 0.575
No log 8.96 27 1.2614 0.605
No log 9.96 30 1.1654 0.63
No log 10.96 33 1.0758 0.66
No log 11.96 36 0.9908 0.73
No log 12.96 39 0.9152 0.72
No log 13.96 42 0.8412 0.755
No log 14.96 45 0.7759 0.78
No log 15.96 48 0.7105 0.785
No log 16.96 51 0.6489 0.815
No log 17.96 54 0.6037 0.825
No log 18.96 57 0.5628 0.83
No log 19.96 60 0.5084 0.84
No log 20.96 63 0.4593 0.85
No log 21.96 66 0.4306 0.865
No log 22.96 69 0.4078 0.87
No log 23.96 72 0.3888 0.875
No log 24.96 75 0.3713 0.885
No log 25.96 78 0.3469 0.89
No log 26.96 81 0.3234 0.91
No log 27.96 84 0.3146 0.905
No log 28.96 87 0.3311 0.895
No log 29.96 90 0.3178 0.92
No log 30.96 93 0.3011 0.92
No log 31.96 96 0.2922 0.93
No log 32.96 99 0.2822 0.93
No log 33.96 102 0.2615 0.93
No log 34.96 105 0.2577 0.94
No log 35.96 108 0.2587 0.94
No log 36.96 111 0.2659 0.93
No log 37.96 114 0.2697 0.925
No log 38.96 117 0.2721 0.93
No log 39.96 120 0.2829 0.935
No log 40.96 123 0.2564 0.94
No log 41.96 126 0.2420 0.94
No log 42.96 129 0.2433 0.94
No log 43.96 132 0.2405 0.945
No log 44.96 135 0.2391 0.95
No log 45.96 138 0.2455 0.955
No log 46.96 141 0.2563 0.945
No log 47.96 144 0.2653 0.95
No log 48.96 147 0.2608 0.945
No log 49.96 150 0.2477 0.95
No log 50.96 153 0.2443 0.95
No log 51.96 156 0.2418 0.95
No log 52.96 159 0.2403 0.94
No log 53.96 162 0.2384 0.945
No log 54.96 165 0.2413 0.95
No log 55.96 168 0.2428 0.96
No log 56.96 171 0.2409 0.955
No log 57.96 174 0.2457 0.95
No log 58.96 177 0.2488 0.95
No log 59.96 180 0.2548 0.955
No log 60.96 183 0.2597 0.955
No log 61.96 186 0.2647 0.955
No log 62.96 189 0.2651 0.955
No log 63.96 192 0.2638 0.955
No log 64.96 195 0.2638 0.955
No log 65.96 198 0.2664 0.955
No log 66.96 201 0.2712 0.95
No log 67.96 204 0.2677 0.955
No log 68.96 207 0.2601 0.95
No log 69.96 210 0.2559 0.95
No log 70.96 213 0.2566 0.95
No log 71.96 216 0.2611 0.95
No log 72.96 219 0.2702 0.95
No log 73.96 222 0.2806 0.945
No log 74.96 225 0.2842 0.945
No log 75.96 228 0.2807 0.945
No log 76.96 231 0.2750 0.95
No log 77.96 234 0.2656 0.955
No log 78.96 237 0.2582 0.96
No log 79.96 240 0.2545 0.96
No log 80.96 243 0.2535 0.96
No log 81.96 246 0.2512 0.96
No log 82.96 249 0.2520 0.96
No log 83.96 252 0.2546 0.96
No log 84.96 255 0.2570 0.96
No log 85.96 258 0.2608 0.96
No log 86.96 261 0.2641 0.96
No log 87.96 264 0.2672 0.955
No log 88.96 267 0.2686 0.955
No log 89.96 270 0.2682 0.955
No log 90.96 273 0.2671 0.955
No log 91.96 276 0.2652 0.96
No log 92.96 279 0.2639 0.96
No log 93.96 282 0.2635 0.96
No log 94.96 285 0.2633 0.96
No log 95.96 288 0.2635 0.955
No log 96.96 291 0.2636 0.955
No log 97.96 294 0.2639 0.955
No log 98.96 297 0.2640 0.955
No log 99.96 300 0.2641 0.955

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1.post200
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.