Edit model card

dit-small_tobacco3482_kd_CEKD_t5.0_a0.7

This model is a fine-tuned version of microsoft/dit-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1347
  • Accuracy: 0.185
  • Brier Loss: 0.8666
  • Nll: 5.9997
  • F1 Micro: 0.185
  • F1 Macro: 0.0488
  • Ece: 0.2480
  • Aurc: 0.7353

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 0.96 3 3.3695 0.06 0.9042 9.1505 0.06 0.0114 0.1750 0.9033
No log 1.96 6 3.2847 0.18 0.8890 7.1646 0.18 0.0305 0.2263 0.8027
No log 2.96 9 3.2039 0.18 0.8773 8.6118 0.18 0.0305 0.2478 0.8186
No log 3.96 12 3.1950 0.18 0.8806 7.4891 0.18 0.0305 0.2514 0.8131
No log 4.96 15 3.1951 0.185 0.8795 6.7125 0.185 0.0488 0.2555 0.7835
No log 5.96 18 3.1931 0.185 0.8766 5.2600 0.185 0.0488 0.2526 0.7702
No log 6.96 21 3.1876 0.185 0.8741 5.6453 0.185 0.0488 0.2372 0.7672
No log 7.96 24 3.1800 0.185 0.8726 5.9473 0.185 0.0488 0.2412 0.7644
No log 8.96 27 3.1712 0.185 0.8712 5.9421 0.185 0.0488 0.2491 0.7615
No log 9.96 30 3.1656 0.185 0.8704 6.6276 0.185 0.0488 0.2516 0.7602
No log 10.96 33 3.1623 0.185 0.8704 6.8796 0.185 0.0488 0.2487 0.7598
No log 11.96 36 3.1601 0.185 0.8708 7.1352 0.185 0.0488 0.2451 0.7559
No log 12.96 39 3.1573 0.185 0.8706 7.0151 0.185 0.0488 0.2492 0.7531
No log 13.96 42 3.1531 0.185 0.8699 6.7912 0.185 0.0488 0.2450 0.7484
No log 14.96 45 3.1485 0.185 0.8693 6.6578 0.185 0.0488 0.2513 0.7491
No log 15.96 48 3.1449 0.185 0.8685 6.1407 0.185 0.0488 0.2596 0.7463
No log 16.96 51 3.1428 0.185 0.8681 5.9160 0.185 0.0488 0.2548 0.7432
No log 17.96 54 3.1421 0.185 0.8678 5.8419 0.185 0.0488 0.2449 0.7401
No log 18.96 57 3.1413 0.185 0.8677 5.7417 0.185 0.0488 0.2606 0.7382
No log 19.96 60 3.1391 0.185 0.8673 5.7824 0.185 0.0488 0.2432 0.7365
No log 20.96 63 3.1378 0.185 0.8671 5.9509 0.185 0.0488 0.2598 0.7368
No log 21.96 66 3.1364 0.185 0.8668 6.0164 0.185 0.0488 0.2477 0.7361
No log 22.96 69 3.1355 0.185 0.8667 6.0109 0.185 0.0488 0.2437 0.7352
No log 23.96 72 3.1350 0.185 0.8666 6.0029 0.185 0.0488 0.2438 0.7351
No log 24.96 75 3.1347 0.185 0.8666 5.9997 0.185 0.0488 0.2480 0.7353

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1.post200
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.