JSL-MedMX-7X

This model is developed by John Snow Labs. Performance on biomedical benchmarks: Open Medical LLM Leaderboard.

This model is available under a CC-BY-NC-ND license and must also conform to this Acceptable Use Policy. If you need to license this model for commercial use, please contact us at info@johnsnowlabs.com.

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "johnsnowlabs/JSL-MedMX-7X"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

πŸ† Evaluation

Tasks Version Filter n-shot Metric Value Stderr
stem N/A none 0 acc_norm 0.5783 Β± 0.0067
none 0 acc 0.6177 Β± 0.0057
- medmcqa Yaml none 0 acc 0.5668 Β± 0.0077
none 0 acc_norm 0.5668 Β± 0.0077
- medqa_4options Yaml none 0 acc 0.6159 Β± 0.0136
none 0 acc_norm 0.6159 Β± 0.0136
- anatomy (mmlu) 0 none 0 acc 0.7111 Β± 0.0392
- clinical_knowledge (mmlu) 0 none 0 acc 0.7396 Β± 0.0270
- college_biology (mmlu) 0 none 0 acc 0.7778 Β± 0.0348
- college_medicine (mmlu) 0 none 0 acc 0.6647 Β± 0.0360
- medical_genetics (mmlu) 0 none 0 acc 0.7200 Β± 0.0451
- professional_medicine (mmlu) 0 none 0 acc 0.7868 Β± 0.0249
- pubmedqa 1 none 0 acc 0.7840 Β± 0.0184
Downloads last month
25
Safetensors
Model size
7.24B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for johnsnowlabs/JSL-MedMX-7X

Quantizations
1 model

Space using johnsnowlabs/JSL-MedMX-7X 1