Edit model card

Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications.

The text embedding set trained by Jina AI, Finetuner team.

Intented Usage & Model Info

jina-embedding-b-en-v1 is a language model that has been trained using Jina AI's Linnaeus-Clean dataset. This dataset consists of 380 million pairs of sentences, which include both query-document pairs. These pairs were obtained from various domains and were carefully selected through a thorough cleaning process. The Linnaeus-Full dataset, from which the Linnaeus-Clean dataset is derived, originally contained 1.6 billion sentence pairs.

The model has a range of use cases, including information retrieval, semantic textual similarity, text reranking, and more.

With a standard size of 110 million parameters, the model enables fast inference while delivering better performance than our small model. It is recommended to use a single GPU for inference. Additionally, we provide the following options:

Data & Parameters

Please checkout our technical blog.


We compared the model against all-minilm-l6-v2/all-mpnet-base-v2 from sbert and text-embeddings-ada-002 from OpenAI:

Name param dimension
all-minilm-l6-v2 23m 384
all-mpnet-base-v2 110m 768
ada-embedding-002 Unknown/OpenAI API 1536
jina-embedding-t-en-v1 14m 312
jina-embedding-s-en-v1 35m 512
jina-embedding-b-en-v1 110m 768
jina-embedding-l-en-v1 330m 1024
Name STS12 STS13 STS14 STS15 STS16 STS17 TRECOVID Quora SciFact
all-minilm-l6-v2 0.724 0.806 0.756 0.854 0.79 0.876 0.473 0.876 0.645
all-mpnet-base-v2 0.726 0.835 0.78 0.857 0.8 0.906 0.513 0.875 0.656
ada-embedding-002 0.698 0.833 0.761 0.861 0.86 0.903 0.685 0.876 0.726
jina-embedding-t-en-v1 0.717 0.773 0.731 0.829 0.777 0.860 0.482 0.840 0.522
jina-embedding-s-en-v1 0.743 0.786 0.738 0.837 0.80 0.875 0.523 0.857 0.524
jina-embedding-b-en-v1 0.751 0.809 0.761 0.856 0.812 0.890 0.606 0.876 0.594
jina-embedding-l-en-v1 0.745 0.832 0.781 0.869 0.837 0.902 0.573 0.881 0.598


Usage with Jina AI Finetuner:

!pip install finetuner
import finetuner

model = finetuner.build_model('jinaai/jina-embedding-b-en-v1')
embeddings = finetuner.encode(
    data=['how is the weather today', 'What is the current weather like today?']
print(finetuner.cos_sim(embeddings[0], embeddings[1]))

Use with sentence-transformers:

from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim

sentences = ['how is the weather today', 'What is the current weather like today?']

model = SentenceTransformer('jinaai/jina-embedding-b-en-v1')
embeddings = model.encode(sentences)
print(cos_sim(embeddings[0], embeddings[1]))


Please consider Finetuner.


  1. The development of jina-embedding-s-en-v2 is currently underway with two main objectives: improving performance and increasing the maximum sequence length.
  2. We are currently working on a bilingual embedding model that combines English and X language. The upcoming model will be called jina-embedding-s/b/l-de-v1.


Join our Discord community and chat with other community members about ideas.


If you find Jina Embeddings useful in your research, please cite the following paper:

      title={Jina Embeddings: A Novel Set of High-Performance Sentence Embedding Models},
      author={Michael Günther and Louis Milliken and Jonathan Geuter and Georgios Mastrapas and Bo Wang and Han Xiao},
Downloads last month
Hosted inference API
This model can be loaded on the Inference API on-demand.

Dataset used to train jinaai/jina-embedding-b-en-v1

Evaluation results