Dogs-Breed-Image-Classification-V0
This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.8210
- Accuracy: 0.7444
Model description
This model was trained using dataset from Kaggle - Standford dogs dataset
Quotes from the website: The Stanford Dogs dataset contains images of 120 breeds of dogs from around the world. This dataset has been built using images and annotation from ImageNet for the task of fine-grained image categorization. It was originally collected for fine-grain image categorization, a challenging problem as certain dog breeds have near identical features or differ in colour and age.
citation: Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao and Li Fei-Fei. Novel dataset for Fine-Grained Image Categorization. First Workshop on Fine-Grained Visual Categorization (FGVC), IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011. [pdf] [poster] [BibTex]
Secondary: J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale Hierarchical Image Database. IEEE Computer Vision and Pattern Recognition (CVPR), 2009. [pdf] [BibTex]
Intended uses & limitations
This model is fined tune solely for classifiying 120 species of dogs.
Training and evaluation data
75% training data, 25% testing data.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
13.4902 | 1.0 | 515 | 4.7822 | 0.0104 |
4.7159 | 2.0 | 1030 | 4.6822 | 0.0323 |
4.6143 | 3.0 | 1545 | 4.5940 | 0.0554 |
4.4855 | 4.0 | 2060 | 4.5027 | 0.0935 |
4.36 | 5.0 | 2575 | 4.3961 | 0.1239 |
4.2198 | 6.0 | 3090 | 4.3112 | 0.1528 |
4.0882 | 7.0 | 3605 | 4.1669 | 0.1747 |
3.9314 | 8.0 | 4120 | 4.0775 | 0.2021 |
3.7863 | 9.0 | 4635 | 3.9487 | 0.2310 |
3.6511 | 10.0 | 5150 | 3.9028 | 0.2466 |
3.5168 | 11.0 | 5665 | 3.8635 | 0.2626 |
3.3999 | 12.0 | 6180 | 3.7550 | 0.2767 |
3.3037 | 13.0 | 6695 | 3.6973 | 0.2884 |
3.1613 | 14.0 | 7210 | 3.6315 | 0.3037 |
3.0754 | 15.0 | 7725 | 3.4839 | 0.3188 |
2.9441 | 16.0 | 8240 | 3.4406 | 0.3302 |
2.8579 | 17.0 | 8755 | 3.3528 | 0.3406 |
2.7531 | 18.0 | 9270 | 3.3132 | 0.3472 |
2.6477 | 19.0 | 9785 | 3.2736 | 0.3567 |
2.5422 | 20.0 | 10300 | 3.1950 | 0.3756 |
2.4629 | 21.0 | 10815 | 3.1174 | 0.4004 |
2.3735 | 22.0 | 11330 | 2.9916 | 0.4225 |
2.2436 | 23.0 | 11845 | 2.9205 | 0.4509 |
2.1578 | 24.0 | 12360 | 2.9197 | 0.4689 |
2.0671 | 25.0 | 12875 | 2.8196 | 0.4866 |
1.9902 | 26.0 | 13390 | 2.7117 | 0.4961 |
1.8737 | 27.0 | 13905 | 2.7129 | 0.5078 |
1.7945 | 28.0 | 14420 | 2.6654 | 0.5143 |
1.7092 | 29.0 | 14935 | 2.6273 | 0.5301 |
1.6228 | 30.0 | 15450 | 2.5407 | 0.5454 |
1.5744 | 31.0 | 15965 | 2.5412 | 0.5559 |
1.4761 | 32.0 | 16480 | 2.4658 | 0.5658 |
1.4084 | 33.0 | 16995 | 2.4247 | 0.5673 |
1.2624 | 34.0 | 17510 | 2.3766 | 0.5758 |
1.2066 | 35.0 | 18025 | 2.2879 | 0.5843 |
1.124 | 36.0 | 18540 | 2.2039 | 0.5872 |
1.074 | 37.0 | 19055 | 2.2469 | 0.5965 |
0.9937 | 38.0 | 19570 | 2.1575 | 0.6011 |
0.9418 | 39.0 | 20085 | 2.0854 | 0.6122 |
0.8812 | 40.0 | 20600 | 1.9991 | 0.6254 |
0.819 | 41.0 | 21115 | 2.0161 | 0.6312 |
0.771 | 42.0 | 21630 | 1.9253 | 0.6375 |
0.7128 | 43.0 | 22145 | 1.9412 | 0.6390 |
0.6434 | 44.0 | 22660 | 1.8463 | 0.6509 |
0.6138 | 45.0 | 23175 | 1.8163 | 0.6650 |
0.5325 | 46.0 | 23690 | 1.7881 | 0.6710 |
0.498 | 47.0 | 24205 | 1.7526 | 0.6744 |
0.4565 | 48.0 | 24720 | 1.7155 | 0.6859 |
0.4109 | 49.0 | 25235 | 1.6874 | 0.6946 |
0.3681 | 50.0 | 25750 | 1.7386 | 0.6997 |
0.3306 | 51.0 | 26265 | 1.6578 | 0.7104 |
0.2913 | 52.0 | 26780 | 1.6641 | 0.7104 |
0.2598 | 53.0 | 27295 | 1.6823 | 0.7162 |
0.2311 | 54.0 | 27810 | 1.6835 | 0.7157 |
0.2115 | 55.0 | 28325 | 1.6581 | 0.7206 |
0.1843 | 56.0 | 28840 | 1.6286 | 0.7274 |
0.1668 | 57.0 | 29355 | 1.6358 | 0.7225 |
0.1483 | 58.0 | 29870 | 1.6422 | 0.7250 |
0.132 | 59.0 | 30385 | 1.6618 | 0.7284 |
0.1164 | 60.0 | 30900 | 1.6894 | 0.7262 |
0.1043 | 61.0 | 31415 | 1.6923 | 0.7276 |
0.0937 | 62.0 | 31930 | 1.6627 | 0.7323 |
0.0826 | 63.0 | 32445 | 1.6280 | 0.7342 |
0.0743 | 64.0 | 32960 | 1.6204 | 0.7366 |
0.0638 | 65.0 | 33475 | 1.6890 | 0.7383 |
0.0603 | 66.0 | 33990 | 1.6967 | 0.7335 |
0.0491 | 67.0 | 34505 | 1.6975 | 0.7306 |
0.0459 | 68.0 | 35020 | 1.7242 | 0.7337 |
0.0416 | 69.0 | 35535 | 1.7019 | 0.7374 |
0.0382 | 70.0 | 36050 | 1.7098 | 0.7381 |
0.0378 | 71.0 | 36565 | 1.7188 | 0.7383 |
0.0326 | 72.0 | 37080 | 1.8212 | 0.7376 |
0.0323 | 73.0 | 37595 | 1.7965 | 0.7393 |
0.0299 | 74.0 | 38110 | 1.7934 | 0.7301 |
0.0259 | 75.0 | 38625 | 1.7799 | 0.7335 |
0.0276 | 76.0 | 39140 | 1.8456 | 0.7301 |
0.0257 | 77.0 | 39655 | 1.8551 | 0.7391 |
0.0234 | 78.0 | 40170 | 1.7780 | 0.7391 |
0.0222 | 79.0 | 40685 | 1.8216 | 0.7362 |
0.0195 | 80.0 | 41200 | 1.8333 | 0.7352 |
0.0214 | 81.0 | 41715 | 1.8526 | 0.7430 |
0.0207 | 82.0 | 42230 | 1.8581 | 0.7364 |
0.0171 | 83.0 | 42745 | 1.8329 | 0.7393 |
0.0175 | 84.0 | 43260 | 1.8841 | 0.7396 |
0.0165 | 85.0 | 43775 | 1.8381 | 0.7345 |
0.0152 | 86.0 | 44290 | 1.8192 | 0.7379 |
0.0168 | 87.0 | 44805 | 1.8538 | 0.7388 |
0.0158 | 88.0 | 45320 | 1.8390 | 0.7371 |
0.0181 | 89.0 | 45835 | 1.8555 | 0.7374 |
0.0142 | 90.0 | 46350 | 1.7987 | 0.7352 |
0.0147 | 91.0 | 46865 | 1.8446 | 0.7427 |
0.0142 | 92.0 | 47380 | 1.8210 | 0.7444 |
0.0124 | 93.0 | 47895 | 1.8233 | 0.7405 |
0.0128 | 94.0 | 48410 | 1.8517 | 0.7393 |
0.0135 | 95.0 | 48925 | 1.8408 | 0.7413 |
0.0122 | 96.0 | 49440 | 1.8153 | 0.7396 |
0.0141 | 97.0 | 49955 | 1.8645 | 0.7432 |
0.0121 | 98.0 | 50470 | 1.8526 | 0.7430 |
0.0124 | 99.0 | 50985 | 1.8693 | 0.7388 |
0.0113 | 100.0 | 51500 | 1.8051 | 0.7427 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.3.0
- Datasets 2.15.0
- Tokenizers 0.15.1
- Downloads last month
- 20
Model tree for jhoppanne/Dogs-Breed-Image-Classification-V0
Base model
microsoft/resnet-50