SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-m
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("jet-taekyo/snowflake_finetuned_recursive")
# Run inference
sentences = [
'What must lenders provide to consumers who are denied credit under the Fair Credit Reporting Act?',
'that consumers who are denied credit receive "adverse action" notices. Anyone who relies on the information in a \ncredit report to deny a consumer credit must, under the Fair Credit Reporting Act, provide an "adverse action" \nnotice to the consumer, which includes "notice of the reasons a creditor took adverse action on the application \nor on an existing credit account."90 In addition, under the risk-based pricing rule,91 lenders must either inform \nborrowers of their credit score, or else tell consumers when "they are getting worse terms because of \ninformation in their credit report." The CFPB has also asserted that "[t]he law gives every applicant the right to \na specific explanation if their application for credit was denied, and that right is not diminished simply because \na company uses a complex algorithm that it doesn\'t understand."92 Such explanations illustrate a shared value \nthat certain decisions need to be explained.',
'measures to prevent, flag, or take other action in response to outputs that \nreproduce particular training data (e.g., plagiarized, trademarked, patented, \nlicensed content or trade secret material). \nIntellectual Property; CBRN \nInformation or Capabilities',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8816 |
cosine_accuracy@3 | 0.9671 |
cosine_accuracy@5 | 0.9868 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.8816 |
cosine_precision@3 | 0.3224 |
cosine_precision@5 | 0.1974 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.8816 |
cosine_recall@3 | 0.9671 |
cosine_recall@5 | 0.9868 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.946 |
cosine_mrr@10 | 0.9282 |
cosine_map@100 | 0.9282 |
dot_accuracy@1 | 0.8816 |
dot_accuracy@3 | 0.9671 |
dot_accuracy@5 | 0.9868 |
dot_accuracy@10 | 1.0 |
dot_precision@1 | 0.8816 |
dot_precision@3 | 0.3224 |
dot_precision@5 | 0.1974 |
dot_precision@10 | 0.1 |
dot_recall@1 | 0.8816 |
dot_recall@3 | 0.9671 |
dot_recall@5 | 0.9868 |
dot_recall@10 | 1.0 |
dot_ndcg@10 | 0.946 |
dot_mrr@10 | 0.9282 |
dot_map@100 | 0.9282 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 714 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 714 samples:
sentence_0 sentence_1 type string string details - min: 11 tokens
- mean: 18.46 tokens
- max: 32 tokens
- min: 21 tokens
- mean: 175.32 tokens
- max: 512 tokens
- Samples:
sentence_0 sentence_1 What is the purpose of conducting adversarial testing in the context of GAI risks?
Human-AI Configuration;
Information Integrity; Harmful Bias
and Homogenization
AI Actor Tasks: AI Deployment, Affected Individuals and Communities, End-Users, Operation and Monitoring, TEVV
MEASURE 4.2: Measurement results regarding AI system trustworthiness in deployment context(s) and across the AI lifecycle are
informed by input from domain experts and relevant AI Actors to validate whether the system is performing consistently as
intended. Results are documented.
Action ID
Suggested Action
GAI Risks
MS-4.2-001
Conduct adversarial testing at a regular cadence to map and measure GAI risks,
including tests to address attempts to deceive or manipulate the application of
provenance techniques or other misuses. Identify vulnerabilities and
understand potential misuse scenarios and unintended outputs.
Information Integrity; Information
Security
MS-4.2-002
Evaluate GAI system performance in real-world scenarios to observe itsHow are measurement results regarding AI system trustworthiness documented and validated?
Human-AI Configuration;
Information Integrity; Harmful Bias
and Homogenization
AI Actor Tasks: AI Deployment, Affected Individuals and Communities, End-Users, Operation and Monitoring, TEVV
MEASURE 4.2: Measurement results regarding AI system trustworthiness in deployment context(s) and across the AI lifecycle are
informed by input from domain experts and relevant AI Actors to validate whether the system is performing consistently as
intended. Results are documented.
Action ID
Suggested Action
GAI Risks
MS-4.2-001
Conduct adversarial testing at a regular cadence to map and measure GAI risks,
including tests to address attempts to deceive or manipulate the application of
provenance techniques or other misuses. Identify vulnerabilities and
understand potential misuse scenarios and unintended outputs.
Information Integrity; Information
Security
MS-4.2-002
Evaluate GAI system performance in real-world scenarios to observe itsWhat types of data provenance information are included in the GAI system inventory entries?
following items in GAI system inventory entries: Data provenance information
(e.g., source, signatures, versioning, watermarks); Known issues reported from
internal bug tracking or external information sharing resources (e.g., AI incident
database, AVID, CVE, NVD, or OECD AI incident monitor); Human oversight roles
and responsibilities; Special rights and considerations for intellectual property,
licensed works, or personal, privileged, proprietary or sensitive data; Underlying
foundation models, versions of underlying models, and access modes.
Data Privacy; Human-AI
Configuration; Information
Integrity; Intellectual Property;
Value Chain and Component
Integration
AI Actor Tasks: Governance and Oversight - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 20per_device_eval_batch_size
: 20num_train_epochs
: 5multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 20per_device_eval_batch_size
: 20per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | cosine_map@100 |
---|---|---|
1.0 | 36 | 0.9145 |
1.3889 | 50 | 0.9256 |
2.0 | 72 | 0.9246 |
2.7778 | 100 | 0.9282 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for jet-taekyo/snowflake_finetuned_recursive
Base model
Snowflake/snowflake-arctic-embed-mEvaluation results
- Cosine Accuracy@1 on Unknownself-reported0.882
- Cosine Accuracy@3 on Unknownself-reported0.967
- Cosine Accuracy@5 on Unknownself-reported0.987
- Cosine Accuracy@10 on Unknownself-reported1.000
- Cosine Precision@1 on Unknownself-reported0.882
- Cosine Precision@3 on Unknownself-reported0.322
- Cosine Precision@5 on Unknownself-reported0.197
- Cosine Precision@10 on Unknownself-reported0.100
- Cosine Recall@1 on Unknownself-reported0.882
- Cosine Recall@3 on Unknownself-reported0.967