Model Card for Model ID

Model Details

Model Description

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: [More Information Needed]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: Medical Q&A
  • Language(s) (NLP): English
  • License: Apache License 2.0
  • Finetuned from model [optional]: LLaMA 2 7B

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

This model is fine tuned on this dataset: https://huggingface.co/datasets/natsume-shokogami/medqa, which is based on https://huggingface.co/datasets/openlifescienceai/medmcqa

Factors

[More Information Needed]

Metrics

Metric used: BLEU, ROUGE

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: NVIDIA Tesla P100 (Kaggle's)
  • Hours used: 15 (though only 2 hours for actual trianing, the rest is debugging)
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: 2.1 kg CO2 approximated https://mlco2.github.io/impact/#publish

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

Kaggle's hardware

Software

Base model: LLaMA 2 7B Dataset: openlifescienceai/medmcqa Fine-tuning: QLoRA

Citation [optional]

https://www.datacamp.com/tutorial/fine-tuning-llama-2

BibTeX:

@InProceedings{pmlr-v174-pal22a, title = {MedMCQA: A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering}, author = {Pal, Ankit and Umapathi, Logesh Kumar and Sankarasubbu, Malaikannan}, booktitle = {Proceedings of the Conference on Health, Inference, and Learning}, pages = {248--260}, year = {2022}, editor = {Flores, Gerardo and Chen, George H and Pollard, Tom and Ho, Joyce C and Naumann, Tristan}, volume = {174}, series = {Proceedings of Machine Learning Research}, month = {07--08 Apr}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v174/pal22a/pal22a.pdf}, url = {https://proceedings.mlr.press/v174/pal22a.html}, abstract = {This paper introduces MedMCQA, a new large-scale, Multiple-Choice Question Answering (MCQA) dataset designed to address real-world medical entrance exam questions. More than 194k high-quality AIIMS & NEET PG entrance exam MCQs covering 2.4k healthcare topics and 21 medical subjects are collected with an average token length of 12.77 and high topical diversity. Each sample contains a question, correct answer(s), and other options which requires a deeper language understanding as it tests the 10+ reasoning abilities of a model across a wide range of medical subjects & topics. A detailed explanation of the solution, along with the above information, is provided in this study.} }

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

Downloads last month
6
Safetensors
Model size
6.74B params
Tensor type
FP16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.