Edit model card

vit-base-patch16-224-FV-20epochs-finetuned-memes

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6532
  • Accuracy: 0.8632
  • Precision: 0.8617
  • Recall: 0.8632
  • F1: 0.8621

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00012
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.1709 0.99 20 0.9393 0.6971 0.6896 0.6971 0.6890
0.5295 1.99 40 0.5024 0.8091 0.8210 0.8091 0.8133
0.2909 2.99 60 0.4070 0.8539 0.8529 0.8539 0.8529
0.1435 3.99 80 0.4136 0.8539 0.8522 0.8539 0.8522
0.0928 4.99 100 0.4495 0.8478 0.8548 0.8478 0.8507
0.0643 5.99 120 0.4897 0.8594 0.8572 0.8594 0.8573
0.061 6.99 140 0.5040 0.8423 0.8490 0.8423 0.8453
0.0519 7.99 160 0.5266 0.8524 0.8502 0.8524 0.8510
0.0546 8.99 180 0.5200 0.8586 0.8632 0.8586 0.8605
0.0478 9.99 200 0.5654 0.8555 0.8548 0.8555 0.8548
0.0509 10.99 220 0.5774 0.8609 0.8626 0.8609 0.8616
0.0467 11.99 240 0.5847 0.8594 0.8602 0.8594 0.8594
0.0468 12.99 260 0.5909 0.8601 0.8597 0.8601 0.8596
0.0469 13.99 280 0.5970 0.8563 0.8560 0.8563 0.8561
0.0438 14.99 300 0.6234 0.8594 0.8583 0.8594 0.8586
0.0441 15.99 320 0.6190 0.8563 0.8582 0.8563 0.8570
0.0431 16.99 340 0.6419 0.8570 0.8584 0.8570 0.8574
0.0454 17.99 360 0.6528 0.8563 0.8556 0.8563 0.8558
0.0417 18.99 380 0.6688 0.8578 0.8575 0.8578 0.8574
0.0432 19.99 400 0.6532 0.8632 0.8617 0.8632 0.8621

Framework versions

  • Transformers 4.24.0.dev0
  • Pytorch 1.11.0+cu102
  • Datasets 2.6.1.dev0
  • Tokenizers 0.13.1
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results