See axolotl config
axolotl version: 0.4.0
adapter: qlora
base_model: meta-llama/Meta-Llama-3-8B-Instruct
base_model_config: meta-llama/Meta-Llama-3-8B-Instruct
datasets:
- path: candenizkocak/code-alpaca-297k
type: alpaca
flash_attention: true
gradient_accumulation_steps: 4
gradient_checkpointing: true
hf_use_auth_token: true
hub_model_id: ibivibiv/llama3-8b-instruct-code
learning_rate: 0.0002
load_in_4bit: true
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 2
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: paged_adamw_32bit
output_dir: /job/out
sample_packing: true
save_safetensors: true
sequence_len: 4096
special_tokens:
pad_token: <|end_of_text|>
tokenizer_type: AutoTokenizer
wandb_project: TuneStudio
wandb_run_id: codellama
wandb_watch: 'true'
warmup_steps: 10
llama3-8b-instruct-code
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
Training results
Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for ibivibiv/llama3-8b-instruct-code
Base model
meta-llama/Meta-Llama-3-8B-Instruct