Edit model card

vit-base-aihub_model-v2

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3076
  • Accuracy: 0.9639
  • Precision: 0.9610
  • Recall: 0.9614
  • F1: 0.9604

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 3 1.2753 0.8373 0.8563 0.7993 0.8022
No log 2.0 6 1.1252 0.8675 0.8895 0.8300 0.8333
No log 3.0 9 0.9427 0.8976 0.9185 0.8696 0.8760
1.1721 4.0 12 0.7995 0.9398 0.9474 0.9195 0.9246
1.1721 5.0 15 0.6820 0.9699 0.9704 0.9613 0.9642
1.1721 6.0 18 0.5927 0.9639 0.9603 0.9583 0.9587
0.7084 7.0 21 0.5239 0.9759 0.9725 0.9729 0.9725
0.7084 8.0 24 0.4743 0.9699 0.9665 0.9671 0.9665
0.7084 9.0 27 0.4436 0.9578 0.9558 0.9556 0.9544
0.4668 10.0 30 0.4070 0.9639 0.9610 0.9614 0.9604
0.4668 11.0 33 0.3817 0.9699 0.9665 0.9671 0.9665
0.4668 12.0 36 0.3625 0.9699 0.9665 0.9671 0.9665
0.4668 13.0 39 0.3536 0.9578 0.9558 0.9556 0.9544
0.3611 14.0 42 0.3384 0.9578 0.9558 0.9556 0.9544
0.3611 15.0 45 0.3249 0.9699 0.9665 0.9671 0.9665
0.3611 16.0 48 0.3164 0.9699 0.9665 0.9671 0.9665
0.3063 17.0 51 0.3142 0.9639 0.9610 0.9614 0.9604
0.3063 18.0 54 0.3122 0.9639 0.9610 0.9614 0.9604
0.3063 19.0 57 0.3093 0.9639 0.9610 0.9614 0.9604
0.294 20.0 60 0.3076 0.9639 0.9610 0.9614 0.9604

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results