File size: 8,227 Bytes
61dc0fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
---
license: other
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
library_name: transformers
pipeline_tag: text-generation
tags:
- llama-3.1
- meta
- autoawq
---
> [!IMPORTANT]
> This repository is a community-driven quantized version of the original model [`meta-llama/Meta-Llama-3.1-405B-Instruct`](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct) which is the FP16 half-precision official version released by Meta AI.
## Model Information
The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out). The Llama 3.1 instruction tuned text only models (8B, 70B, 405B) are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks.
**Model developer**: Meta
**Model Architecture:** Llama 3.1 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
<table>
<tr>
<td>
</td>
<td><strong>Training Data</strong>
</td>
<td><strong>Params</strong>
</td>
<td><strong>Input modalities</strong>
</td>
<td><strong>Output modalities</strong>
</td>
<td><strong>Context length</strong>
</td>
<td><strong>GQA</strong>
</td>
<td><strong>Token count</strong>
</td>
<td><strong>Knowledge cutoff</strong>
</td>
</tr>
<tr>
<td rowspan="3" >Llama 3.1 (text only)
</td>
<td rowspan="3" >A new mix of publicly available online data.
</td>
<td>8B
</td>
<td>Multilingual Text
</td>
<td>Multilingual Text and code
</td>
<td>128k
</td>
<td>Yes
</td>
<td rowspan="3" >15T+
</td>
<td rowspan="3" >December 2023
</td>
</tr>
<tr>
<td>70B
</td>
<td>Multilingual Text
</td>
<td>Multilingual Text and code
</td>
<td>128k
</td>
<td>Yes
</td>
</tr>
<tr>
<td>405B
</td>
<td>Multilingual Text
</td>
<td>Multilingual Text and code
</td>
<td>128k
</td>
<td>Yes
</td>
</tr>
</table>
**Supported languages:** English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai.
**Llama 3.1 family of models**. Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability.
**Model Release Date:** July 23, 2024.
**Status:** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
**License:** A custom commercial license, the Llama 3.1 Community License, is available at: [https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE)
Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3.1 in applications, please go [here](https://github.com/meta-llama/llama-recipes).
For more information please refer to the original model card [`meta-llama/Meta-Llama-3.1-405B-Instruct`](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct).
## Quantized Model Information
Llama 3.1 405B Instruct has been quantized using [AutoAWQ](https://github.com/casperhansen/AutoAWQ) from FP16 down to INT4 using the GEMM kernels performing zero-point quantization with a group size of 128.
## Quantized Model Usage
> [!NOTE]
> In order to run the inference with Llama 3.1 405B Instruct AWQ in INT4, around 203 GiB of VRAM are needed only for loading the model checkpoint, without including the KV cache or the CUDA graphs, meaning that there should be a bit over that VRAM available.
In order to use the current quantized model, support is offered for different solutions:
### 🤗 transformers
To run the inference on top of Llama 3.1 405B Instruct AWQ in INT4 precision, the AWQ model can be instantiated as any other causal language modeling model via `AutoModelForCausalLM` and run the inference normally.
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "hugging-quants/Meta-Llama-3.1-405B-Instruct-AWQ-INT4"
prompt = [
{"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
{"role": "user", "content": "What's Deep Learning?"},
]
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.padding_side = "left"
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>"),
]
inputs = tokenizer.apply_chat_template(prompt, tokenize=True, add_generation_prompt=True, return_tensors="pt").cuda()
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="auto",
)
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256, eos_token_id=terminators)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
```
### AutoAWQ
Alternatively, one may want to run that via `AutoAWQ` even though it's built on top of 🤗 `transformers`, which is the recommended approach instead as described above.
```python
import torch
from autoawq import AutoAWQForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "hugging-quants/Meta-Llama-3.1-405B-Instruct-AWQ-INT4"
prompt = [
{"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
{"role": "user", "content": "What's Deep Learning?"},
]
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.padding_side = "left"
inputs = tokenizer.apply_chat_template(prompt, tokenize=True, add_generation_prompt=True, return_tensors="pt").cuda()
model = AutoAWQForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="auto",
fuse_layers=True,
)
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
```
The AutoAWQ script has been adapted from [AutoAWQ/examples/generate.py](https://github.com/casper-hansen/AutoAWQ/blob/main/examples/generate.py).
### 🤗 Text Generation Inference (TGI)
Coming soon!
## Quantization Reproduction
> [!NOTE]
> In order to quantize Llama 3.1 405B Instruct using AutoAWQ, you will need to use an instance with at least enough CPU RAM to fit the whole model i.e. ~800GiB, and an NVIDIA GPU with 80GiB of VRAM to quantize it.
In order to quantize Llama 3.1 405B Instruct, first install `torch` and `autoawq` as follows:
```bash
pip install "torch>=2.2.0,<2.3.0" autoawq --upgrade
```
Otherwise the quantization may fail, since the AutoAWQ kernels are built with PyTorch 2.2.1, meaning that those will break with PyTorch 2.3.0.
Then install the latest version of `transformers` as follows:
```bash
pip install "transformers>=4.43.0" --upgrade
```
And then, run the following script, adapted from [`AutoAWQ/examples/quantize.py`](https://github.com/casper-hansen/AutoAWQ/blob/main/examples/quantize.py) as follows:
```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer
model_path = "meta-llama/Meta-Llama-3.1-405B-Instruct"
quant_path = "hugging-quants/Meta-Llama-3.1-405B-Instruct-AWQ-INT4"
quant_config = {
"zero_point": True,
"q_group_size": 128,
"w_bit": 4,
"version": "GEMM",
}
# Load model
model = AutoAWQForCausalLM.from_pretrained(
model_path, **{"low_cpu_mem_usage": True, "use_cache": False}
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Quantize
model.quantize(tokenizer, quant_config=quant_config)
# Save quantized model
model.save_quantized(quant_path)
tokenizer.save_pretrained(quant_path)
print(f'Model is quantized and saved at "{quant_path}"')
``` |