readme: add initial version

#1
by stefan-it - opened
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: fr
3
+ license: mit
4
+ tags:
5
+ - flair
6
+ - token-classification
7
+ - sequence-tagger-model
8
+ base_model: hmteams/teams-base-historic-multilingual-discriminator
9
+ widget:
10
+ - text: — 469 . Πεδία . Les tribraques formés par un seul mot sont rares chez les
11
+ tragiques , partont ailleurs qu ’ au premier pied . CÉ . cependant QEd , Roi ,
12
+ 719 , 826 , 4496 .
13
+ ---
14
+
15
+ # Fine-tuned Flair Model on AjMC French NER Dataset (HIPE-2022)
16
+
17
+ This Flair model was fine-tuned on the
18
+ [AjMC French](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md)
19
+ NER Dataset using hmTEAMS as backbone LM.
20
+
21
+ The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics,
22
+ and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/)
23
+ project.
24
+
25
+ The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`.
26
+
27
+ # Results
28
+
29
+ We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration:
30
+
31
+ * Batch Sizes: `[8, 4]`
32
+ * Learning Rates: `[0.00015, 0.00016]`
33
+
34
+ And report micro F1-score on development set:
35
+
36
+ | Configuration | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Avg. |
37
+ |-------------------|--------------|--------------|--------------|--------------|--------------|--------------|
38
+ | bs4-e10-lr0.00016 | [0.8417][1] | [0.8404][2] | [0.8414][3] | [0.8344][4] | [0.8375][5] | 83.91 ± 0.28 |
39
+ | bs4-e10-lr0.00015 | [0.824][6] | [0.8352][7] | [0.8385][8] | [0.8204][9] | [0.8362][10] | 83.09 ± 0.72 |
40
+ | bs8-e10-lr0.00016 | [0.801][11] | [0.8155][12] | [0.8248][13] | [0.8292][14] | [0.8462][15] | 82.33 ± 1.5 |
41
+ | bs8-e10-lr0.00015 | [0.8098][16] | [0.8079][17] | [0.8248][18] | [0.8193][19] | [0.842][20] | 82.08 ± 1.23 |
42
+
43
+ [1]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbyt5-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-1
44
+ [2]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbyt5-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-2
45
+ [3]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbyt5-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-3
46
+ [4]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbyt5-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-4
47
+ [5]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbyt5-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-5
48
+ [6]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbyt5-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-1
49
+ [7]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbyt5-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-2
50
+ [8]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbyt5-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-3
51
+ [9]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbyt5-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-4
52
+ [10]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbyt5-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-5
53
+ [11]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbyt5-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-1
54
+ [12]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbyt5-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-2
55
+ [13]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbyt5-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-3
56
+ [14]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbyt5-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-4
57
+ [15]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbyt5-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-5
58
+ [16]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbyt5-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-1
59
+ [17]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbyt5-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-2
60
+ [18]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbyt5-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-3
61
+ [19]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbyt5-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-4
62
+ [20]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbyt5-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-5
63
+
64
+ The [training log](training.log) and TensorBoard logs are also uploaded to the model hub.
65
+
66
+ More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench).
67
+
68
+ # Acknowledgements
69
+
70
+ We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and
71
+ [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models.
72
+
73
+ Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC).
74
+ Many Thanks for providing access to the TPUs ❤️