image_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1196
  • Accuracy: 0.6188

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 40 1.8353 0.4
No log 2.0 80 1.5508 0.5062
No log 3.0 120 1.4576 0.45
No log 4.0 160 1.3557 0.5062
No log 5.0 200 1.2596 0.5687
No log 6.0 240 1.2627 0.5125
No log 7.0 280 1.1809 0.5687
No log 8.0 320 1.1993 0.575
No log 9.0 360 1.2327 0.5375
No log 10.0 400 1.1796 0.5938
No log 11.0 440 1.1102 0.6062
No log 12.0 480 1.2828 0.5375
1.0547 13.0 520 1.1936 0.5875
1.0547 14.0 560 1.2056 0.5563
1.0547 15.0 600 1.2566 0.5625
1.0547 16.0 640 1.1936 0.6438
1.0547 17.0 680 1.1728 0.5813
1.0547 18.0 720 1.2201 0.5875
1.0547 19.0 760 1.2704 0.5563
1.0547 20.0 800 1.2232 0.5375

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for hanslab37/image_classification

Finetuned
(1793)
this model

Evaluation results