hansken_human_hql_v2

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the hansh/hansken_hql_large dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3031

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss
0.3676 0.9994 788 0.3796
0.2968 2.0 1577 0.3381
0.2658 2.9994 2365 0.3186
0.2389 4.0 3154 0.3031
0.2098 4.9994 3942 0.3035
0.185 6.0 4731 0.3079
0.1707 6.9994 5519 0.3125
0.1578 8.0 6308 0.3237
0.1426 8.9994 7096 0.3326

Framework versions

  • PEFT 0.12.0
  • Transformers 4.43.1
  • Pytorch 2.1.2+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
10
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for hansh/hansken_human_hql_v2

Adapter
(535)
this model

Dataset used to train hansh/hansken_human_hql_v2