hansken_human_hql

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the hansh/hansken_hql dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2362

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss
0.4508 0.9976 102 0.4433
0.302 1.9951 204 0.3140
0.2692 2.9927 306 0.2616
0.177 4.0 409 0.2431
0.1616 4.9976 511 0.2362
0.1358 5.9951 613 0.2394
0.1199 6.9927 715 0.2474
0.1051 8.0 818 0.2625
0.0945 8.9976 920 0.2797
0.0843 9.9951 1022 0.2892

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
10
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for hansh/hansken_human_hql

Adapter
(497)
this model

Dataset used to train hansh/hansken_human_hql