Lemnos LLM
Collection
7B parameter model
•
2 items
•
Updated
This is "Lemnos" , a new Instruction Tuned model based on the Llama 2 model architecture.
It was trained on general wikipedia corpus and then finetuned on a custom instruction dataset.
It is only for use as an experimental version prior launching a new one which also supports Greek.
Prerequisites packages:
Minimum Environment: T4 GPU (The free of charge Google Colab T4, should run fine) or just run all this Colab (make sure you select T4 GPU): https://colab.research.google.com/drive/1lp-JygPxsaQp-NdB7Mh_uVVYeIIXcAlt?usp=sharing
Notice: Since it is a 7B parameter model, in FP32 and it takes some time to load all the safetensors. An alternative, 4-bit quantized will be uploaded soon.
# Upgrade in case bitsandbytes already installed
pip install transformers accelerate bitsandbytes -U
# or from Colab
!pip install transformers accelerate bitsandbytes -U
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch
# Specify the model hub
hub_model = 'gsar78/Lemnos_it_en_v2'
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(hub_model, trust_remote_code=True)
# Configure the BitsAndBytesConfig for 4-bit quantization
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type='nf4',
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=False
)
# Load the model with the specified configuration
model = AutoModelForCausalLM.from_pretrained(
hub_model,
quantization_config=bnb_config,
trust_remote_code=True,
device_map="auto"
)
# Function to generate text based on a prompt using the Alpaca format
def generate_text(prompt, max_length=512):
# Format the prompt according to the Alpaca format
alpaca_prompt = f"### Instruction:\n{prompt}\n\n### Response:\n"
# Tokenize the input prompt
inputs = tokenizer(alpaca_prompt, return_tensors="pt").to(model.device)
# Generate text using the model
outputs = model.generate(
input_ids=inputs['input_ids'],
max_length=max_length,
num_return_sequences=1,
pad_token_id=tokenizer.eos_token_id
)
# Decode the generated tokens to text
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Remove the prompt part from the output to get only the response
response = generated_text[len(alpaca_prompt):]
return response
# Example question
prompt = "What are the three basic colors?"
generated_text = generate_text(prompt)
print(generated_text)
# Output:
# Red, blue, and yellow.