Edit model card

distilhubert-finetuned-gtzan-finetuned-gtzan

This model is a fine-tuned version of gnuevo/distilhubert-finetuned-gtzan on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9179
  • Accuracy: 0.84

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.15
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.3025 1.0 57 2.2928 0.2
2.2609 2.0 114 2.2683 0.27
1.9479 3.0 171 1.9099 0.4
1.211 4.0 228 1.5258 0.39
0.9834 5.0 285 1.4254 0.52
0.6456 6.0 342 1.3216 0.57
0.5043 7.0 399 1.1890 0.69
0.4696 8.0 456 1.0764 0.8
0.3204 9.0 513 0.9564 0.82
0.3164 10.0 570 0.9101 0.83
0.2334 11.0 627 0.9021 0.84
0.217 12.0 684 0.9051 0.84
0.1781 13.0 741 0.9118 0.84
0.1203 14.0 798 0.9153 0.85
0.0639 15.0 855 0.9179 0.84

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
0
Safetensors
Model size
23.9M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Dataset used to train gnuevo/distilhubert-finetuned-gtzan-finetuned-gtzan

Evaluation results