MetaModels
Collection
Bringing my ideas to life
β’
5 items
β’
Updated
This model is a Mixure of Experts (MoE) made with mergekit (mixtral branch). It uses the following base models:
base_model: mlabonne/Marcoro14-7B-slerp
dtype: bfloat16
experts:
- positive_prompts:
- chat
- assistant
- tell me
- explain
source_model: openchat/openchat-3.5-1210
- positive_prompts:
- code
- python
- javascript
- programming
- algorithm
source_model: beowolx/CodeNinja-1.0-OpenChat-7B
- positive_prompts:
- storywriting
- write
- scene
- story
- character
source_model: maywell/PiVoT-0.1-Starling-LM-RP
- positive_prompts:
- reason
- math
- mathematics
- solve
- count
source_model: WizardLM/WizardMath-7B-V1.1
- positive_prompts:
- korean
- answer in korean
- korea
source_model: davidkim205/komt-mistral-7b-v1
- positive_prompts:
- chinese
- china
- answer in chinese
source_model: OpenBuddy/openbuddy-zephyr-7b-v14.1
- positive_prompts:
- hindi
- india
- hindu
- answer in hindi
source_model: manishiitg/open-aditi-hi-v1
- positive_prompts:
- german
- germany
- answer in german
- deutsch
source_model: VAGOsolutions/SauerkrautLM-7b-v1-mistral
gate_mode: hidden
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "gagan3012/MetaModel_moe_multilingualv1"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])