MetaModel_moe_multilingualv1

This model is a Mixure of Experts (MoE) made with mergekit (mixtral branch). It uses the following base models:

🧩 Configuration

base_model: mlabonne/Marcoro14-7B-slerp
dtype: bfloat16
experts:
- positive_prompts:
  - chat
  - assistant
  - tell me
  - explain
  source_model: openchat/openchat-3.5-1210
- positive_prompts:
  - code
  - python
  - javascript
  - programming
  - algorithm
  source_model: beowolx/CodeNinja-1.0-OpenChat-7B
- positive_prompts:
  - storywriting
  - write
  - scene
  - story
  - character
  source_model: maywell/PiVoT-0.1-Starling-LM-RP
- positive_prompts:
  - reason
  - math
  - mathematics
  - solve
  - count
  source_model: WizardLM/WizardMath-7B-V1.1
- positive_prompts:
  - korean
  - answer in korean
  - korea
  source_model: davidkim205/komt-mistral-7b-v1
- positive_prompts:
  - chinese
  - china
  - answer in chinese
  source_model: OpenBuddy/openbuddy-zephyr-7b-v14.1
- positive_prompts:
  - hindi
  - india
  - hindu
  - answer in hindi
  source_model: manishiitg/open-aditi-hi-v1
- positive_prompts:
  - german
  - germany
  - answer in german
  - deutsch
  source_model: VAGOsolutions/SauerkrautLM-7b-v1-mistral
gate_mode: hidden

πŸ’» Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "gagan3012/MetaModel_moe_multilingualv1"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
1,107
Safetensors
Model size
46.7B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gagan3012/MetaModel_moe_multilingualv1

Quantizations
1 model

Collection including gagan3012/MetaModel_moe_multilingualv1