This model is a fork of distilbert-base-uncased-finetuned-sst-2-english quantized with Optimum library 🤗 using static quantization.

This model can be used as follow:

import onnxruntime
from transformers import AutoTokenizer
from optimum.onnxruntime import ORTModelForSequenceClassification

session_options = onnxruntime.SessionOptions()
session_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_DISABLE_ALL

tokenizer = AutoTokenizer.from_pretrained("fxmarty/distilbert-base-uncased-sst2-onnx-int8-for-tensorrt")
ort_model = ORTModelForSequenceClassification.from_pretrained(
    "fxmarty/distilbert-base-uncased-sst2-onnx-int8-for-tensorrt",
    provider="TensorrtExecutionProvider",
    session_options=session_options,
    provider_options={"trt_int8_enable": True},
)

inp = tokenizer("TensorRT is a bit painful to use, but at the end of day it runs smoothly and blazingly fast!", return_tensors="np")

res = ort_model(**inp)

print(res)
print(ort_model.config.id2label[res.logits[0].argmax()])
# SequenceClassifierOutput(loss=None, logits=array([[-0.545066 ,  0.5609764]], dtype=float32), hidden_states=None, attentions=None)
# POSITIVE

Inspecting the graph (for example here with netron), we see that it contains Quantize and Dequantize nodes, that will be interpreted by TensorRT to run in INT8:

QDQ

Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train fxmarty/distilbert-base-uncased-sst2-onnx-int8-for-tensorrt