Edit model card

b24-wav2vec2-large-xls-r-romansh-colab

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3401
  • Wer: 0.2625

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
9.4471 0.76 100 3.3151 1.0
3.0392 1.52 200 3.0118 1.0
2.9633 2.29 300 3.0023 1.0
2.9643 3.05 400 2.9365 1.0
2.9381 3.81 500 2.9319 1.0
2.9411 4.58 600 2.9264 1.0
2.9407 5.34 700 2.9141 1.0
2.9027 6.11 800 2.8848 1.0
2.8833 6.87 900 2.8796 0.9988
2.8805 7.63 1000 2.8679 0.9956
2.7051 8.4 1100 1.8944 1.0
1.343 9.16 1200 0.7785 0.6970
0.8156 9.92 1300 0.5659 0.5824
0.591 10.68 1400 0.4982 0.5163
0.488 11.45 1500 0.4421 0.4299
0.4056 12.21 1600 0.3927 0.3959
0.3488 12.97 1700 0.4095 0.3910
0.2977 13.74 1800 0.3833 0.3687
0.273 14.5 1900 0.3690 0.3388
0.2601 15.27 2000 0.3505 0.3121
0.2258 16.03 2100 0.3577 0.3121
0.2122 16.79 2200 0.3467 0.3018
0.2095 17.56 2300 0.3361 0.2951
0.1719 18.32 2400 0.3572 0.2948
0.1722 19.08 2500 0.3380 0.2857
0.1634 19.84 2600 0.3516 0.2883
0.1592 20.61 2700 0.3374 0.2846
0.153 21.37 2800 0.3395 0.2783
0.1479 22.14 2900 0.3336 0.2729
0.1443 22.9 3000 0.3234 0.2669
0.1339 23.66 3100 0.3345 0.2664
0.1149 24.43 3200 0.3369 0.2664
0.1205 25.19 3300 0.3470 0.2660
0.1251 25.95 3400 0.3319 0.2629
0.1201 26.71 3500 0.3381 0.2667
0.1107 27.48 3600 0.3538 0.2655
0.1117 28.24 3700 0.3423 0.2625
0.1104 29.01 3800 0.3398 0.2608
0.104 29.77 3900 0.3401 0.2625

Framework versions

  • Transformers 4.26.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results