franziskaM's picture
update model card README.md
706c445
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_13_0
metrics:
  - wer
model-index:
  - name: b24-wav2vec2-large-xls-r-romansh-colab
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_13_0
          type: common_voice_13_0
          config: rm-vallader
          split: test
          args: rm-vallader
        metrics:
          - name: Wer
            type: wer
            value: 0.2624592454587797

b24-wav2vec2-large-xls-r-romansh-colab

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3401
  • Wer: 0.2625

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
9.4471 0.76 100 3.3151 1.0
3.0392 1.52 200 3.0118 1.0
2.9633 2.29 300 3.0023 1.0
2.9643 3.05 400 2.9365 1.0
2.9381 3.81 500 2.9319 1.0
2.9411 4.58 600 2.9264 1.0
2.9407 5.34 700 2.9141 1.0
2.9027 6.11 800 2.8848 1.0
2.8833 6.87 900 2.8796 0.9988
2.8805 7.63 1000 2.8679 0.9956
2.7051 8.4 1100 1.8944 1.0
1.343 9.16 1200 0.7785 0.6970
0.8156 9.92 1300 0.5659 0.5824
0.591 10.68 1400 0.4982 0.5163
0.488 11.45 1500 0.4421 0.4299
0.4056 12.21 1600 0.3927 0.3959
0.3488 12.97 1700 0.4095 0.3910
0.2977 13.74 1800 0.3833 0.3687
0.273 14.5 1900 0.3690 0.3388
0.2601 15.27 2000 0.3505 0.3121
0.2258 16.03 2100 0.3577 0.3121
0.2122 16.79 2200 0.3467 0.3018
0.2095 17.56 2300 0.3361 0.2951
0.1719 18.32 2400 0.3572 0.2948
0.1722 19.08 2500 0.3380 0.2857
0.1634 19.84 2600 0.3516 0.2883
0.1592 20.61 2700 0.3374 0.2846
0.153 21.37 2800 0.3395 0.2783
0.1479 22.14 2900 0.3336 0.2729
0.1443 22.9 3000 0.3234 0.2669
0.1339 23.66 3100 0.3345 0.2664
0.1149 24.43 3200 0.3369 0.2664
0.1205 25.19 3300 0.3470 0.2660
0.1251 25.95 3400 0.3319 0.2629
0.1201 26.71 3500 0.3381 0.2667
0.1107 27.48 3600 0.3538 0.2655
0.1117 28.24 3700 0.3423 0.2625
0.1104 29.01 3800 0.3398 0.2608
0.104 29.77 3900 0.3401 0.2625

Framework versions

  • Transformers 4.26.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3