File size: 4,137 Bytes
706c445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_13_0
metrics:
- wer
model-index:
- name: b24-wav2vec2-large-xls-r-romansh-colab
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_13_0
      type: common_voice_13_0
      config: rm-vallader
      split: test
      args: rm-vallader
    metrics:
    - name: Wer
      type: wer
      value: 0.2624592454587797
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# b24-wav2vec2-large-xls-r-romansh-colab

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_13_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3401
- Wer: 0.2625

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 9.4471        | 0.76  | 100  | 3.3151          | 1.0    |
| 3.0392        | 1.52  | 200  | 3.0118          | 1.0    |
| 2.9633        | 2.29  | 300  | 3.0023          | 1.0    |
| 2.9643        | 3.05  | 400  | 2.9365          | 1.0    |
| 2.9381        | 3.81  | 500  | 2.9319          | 1.0    |
| 2.9411        | 4.58  | 600  | 2.9264          | 1.0    |
| 2.9407        | 5.34  | 700  | 2.9141          | 1.0    |
| 2.9027        | 6.11  | 800  | 2.8848          | 1.0    |
| 2.8833        | 6.87  | 900  | 2.8796          | 0.9988 |
| 2.8805        | 7.63  | 1000 | 2.8679          | 0.9956 |
| 2.7051        | 8.4   | 1100 | 1.8944          | 1.0    |
| 1.343         | 9.16  | 1200 | 0.7785          | 0.6970 |
| 0.8156        | 9.92  | 1300 | 0.5659          | 0.5824 |
| 0.591         | 10.68 | 1400 | 0.4982          | 0.5163 |
| 0.488         | 11.45 | 1500 | 0.4421          | 0.4299 |
| 0.4056        | 12.21 | 1600 | 0.3927          | 0.3959 |
| 0.3488        | 12.97 | 1700 | 0.4095          | 0.3910 |
| 0.2977        | 13.74 | 1800 | 0.3833          | 0.3687 |
| 0.273         | 14.5  | 1900 | 0.3690          | 0.3388 |
| 0.2601        | 15.27 | 2000 | 0.3505          | 0.3121 |
| 0.2258        | 16.03 | 2100 | 0.3577          | 0.3121 |
| 0.2122        | 16.79 | 2200 | 0.3467          | 0.3018 |
| 0.2095        | 17.56 | 2300 | 0.3361          | 0.2951 |
| 0.1719        | 18.32 | 2400 | 0.3572          | 0.2948 |
| 0.1722        | 19.08 | 2500 | 0.3380          | 0.2857 |
| 0.1634        | 19.84 | 2600 | 0.3516          | 0.2883 |
| 0.1592        | 20.61 | 2700 | 0.3374          | 0.2846 |
| 0.153         | 21.37 | 2800 | 0.3395          | 0.2783 |
| 0.1479        | 22.14 | 2900 | 0.3336          | 0.2729 |
| 0.1443        | 22.9  | 3000 | 0.3234          | 0.2669 |
| 0.1339        | 23.66 | 3100 | 0.3345          | 0.2664 |
| 0.1149        | 24.43 | 3200 | 0.3369          | 0.2664 |
| 0.1205        | 25.19 | 3300 | 0.3470          | 0.2660 |
| 0.1251        | 25.95 | 3400 | 0.3319          | 0.2629 |
| 0.1201        | 26.71 | 3500 | 0.3381          | 0.2667 |
| 0.1107        | 27.48 | 3600 | 0.3538          | 0.2655 |
| 0.1117        | 28.24 | 3700 | 0.3423          | 0.2625 |
| 0.1104        | 29.01 | 3800 | 0.3398          | 0.2608 |
| 0.104         | 29.77 | 3900 | 0.3401          | 0.2625 |


### Framework versions

- Transformers 4.26.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3