tinyllama-moe-base-mix-orpo
This model is a fine-tuned version of four-two-labs/tinyllama-moe-base on the see code
dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1757
- Rewards/chosen: -0.1708
- Rewards/rejected: -0.1682
- Rewards/accuracies: 0.5003
- Rewards/margins: -0.0027
- Logps/rejected: -1.6818
- Logps/chosen: -1.7085
- Logits/rejected: -2.6114
- Logits/chosen: -2.6139
- Nll Loss: 1.0859
- Log Odds Ratio: -0.8989
- Log Odds Chosen: -0.1073
Model description
More information needed
Training and evaluation data
from datasets import load_dataset
from datasets import interleave_datasets
def format_chat_template(row):
for key in ['prompt', 'chosen', 'rejected']:
row[key] = tokenizer.apply_chat_template(row[key], tokenize=False)
return row
dataset = (
interleave_datasets([
(
interleave_datasets(
load_dataset(
'four-two-labs/orpo-dpo-mix-40k-multilang-fixed',
token=hf_token,
)
.values()
)
.select_columns(['prompt', 'chosen', 'rejected'])
),
(
load_dataset(
'four-two-labs/translations-5M-DPO',
split='train',
token=hf_token,
)
.shuffle(42)
.select(range(250_000))
.select_columns(['prompt', 'chosen', 'rejected'])
),
(
load_dataset(
'four-two-labs/ultrafeedback_binarized-fixed',
split='train_prefs',
token=hf_token,
)
.select_columns(['prompt', 'chosen', 'rejected'])
),
])
.shuffle(seed=42)
#.select(range(1000))
.map(format_chat_template, num_proc=32)
.train_test_split(test_size=0.01)
)
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1835 | 0.6001 | 2270 | 1.1764 | -0.1711 | -0.1684 | 0.4976 | -0.0027 | -1.6838 | -1.7106 | -2.6416 | -2.6430 | 1.0866 | -0.8991 | -0.1073 |
1.1494 | 1.2002 | 4540 | 1.1757 | -0.1709 | -0.1682 | 0.5003 | -0.0026 | -1.6820 | -1.7085 | -2.5529 | -2.5573 | 1.0860 | -0.8988 | -0.1070 |
1.233 | 1.8003 | 6810 | 1.1757 | -0.1709 | -0.1682 | 0.4993 | -0.0027 | -1.6819 | -1.7086 | -2.5859 | -2.5892 | 1.0859 | -0.8989 | -0.1073 |
1.2344 | 2.4004 | 9080 | 1.1757 | -0.1708 | -0.1682 | 0.5003 | -0.0027 | -1.6818 | -1.7085 | -2.6114 | -2.6139 | 1.0859 | -0.8989 | -0.1073 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.1.2+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for four-two-labs/tinyllama-moe-base-mix-orpo
Base model
four-two-labs/tinyllama-moe-base