YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
flexudy-pipe-question-generation-v2
After transcribing your audio with Wav2Vec2, you might be interested in a post processor.
All paragraphs had at most 128 tokens (separated by white spaces)
from transformers import T5Tokenizer, T5ForConditionalGeneration
model_name = "flexudy/t5-small-wav2vec2-grammar-fixer"
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
sent = """GOING ALONG SLUSHY COUNTRY ROADS AND SPEAKING TO DAMP AUDIENCES IN DRAUGHTY SCHOOL ROOMS DAY AFTER DAY FOR A FORTNIGHT HE'LL HAVE TO PUT IN AN APPEARANCE AT SOME PLACE OF WORSHIP ON SUNDAY MORNING AND HE CAN COME TO US IMMEDIATELY AFTERWARDS"""
input_text = "fix: { " + sent + " } </s>"
input_ids = tokenizer.encode(input_text, return_tensors="pt", max_length=256, truncation=True, add_special_tokens=True)
outputs = model.generate(
input_ids=input_ids,
max_length=256,
num_beams=4,
repetition_penalty=1.0,
length_penalty=1.0,
early_stopping=True
)
sentence = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
print(f"{sentence}")
INPUT 1:
WHEN ARE YOU COMING TOMORROW I AM ASKING BECAUSE OF THE MONEY YOU OWE ME PLEASE GIVE IT TO ME I AM WAITING YOU HAVE BEEN AVOIDING ME SINCE TWO THOUSAND AND THREE
OUTPUT 1:
When are you coming tomorrow? I am asking because of the money you owe me, please give it to me. I am waiting. You have been avoiding me since 2003.
INPUT 2:
GOING ALONG SLUSHY COUNTRY ROADS AND SPEAKING TO DAMP AUDIENCES IN DRAUGHTY SCHOOL ROOMS DAY AFTER DAY FOR A FORTNIGHT HE'LL HAVE TO PUT IN AN APPEARANCE AT SOME PLACE OF WORSHIP ON SUNDAY MORNING AND HE CAN COME TO US IMMEDIATELY AFTERWARDS
OUTPUT 2:
Going along Slushy Country Roads and speaking to Damp audiences in Draughty School rooms day after day for a fortnight, he'll have to put in an appearance at some place of worship on Sunday morning and he can come to us immediately afterwards.
I strongly recommend improving the performance via further fine-tuning or by training more examples.
- Possible Quick Rule based improvements: Align the transcribed version and the generated version. If the similarity of two words (case-insensitive) vary by more than some threshold based on some similarity metric (e.g. Levenshtein), then keep the transcribed word.
- Downloads last month
- 272