Multilingual Universal Part-of-Speech Tagging in Flair (default model)

This is the default multilingual universal part-of-speech tagging model that ships with Flair.

F1-Score: 98,47 (12 UD Treebanks covering English, German, French, Italian, Dutch, Polish, Spanish, Swedish, Danish, Norwegian, Finnish and Czech)

Predicts universal POS tags:

tag meaning
ADJ adjective
ADP adposition
ADV adverb
AUX auxiliary
CCONJ coordinating conjunction
DET determiner
INTJ interjection
NOUN noun
NUM numeral
PART particle
PRON pronoun
PROPN proper noun
PUNCT punctuation
SCONJ subordinating conjunction
SYM symbol
VERB verb
X other

Based on Flair embeddings and LSTM-CRF.


Demo: How to use in Flair

Requires: Flair (pip install flair)

from flair.data import Sentence
from flair.models import SequenceTagger

# load tagger
tagger = SequenceTagger.load("flair/upos-multi")

# make example sentence
sentence = Sentence("Ich liebe Berlin, as they say. ")

# predict NER tags
tagger.predict(sentence)

# print sentence
print(sentence)

# print predicted NER spans
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('pos'):
    print(entity)

This yields the following output:

Span [1]: "Ich"   [− Labels: PRON (0.9999)]
Span [2]: "liebe"   [− Labels: VERB (0.9999)]
Span [3]: "Berlin"   [− Labels: PROPN (0.9997)]
Span [4]: ","   [− Labels: PUNCT (1.0)]
Span [5]: "as"   [− Labels: SCONJ (0.9991)]
Span [6]: "they"   [− Labels: PRON (0.9998)]
Span [7]: "say"   [− Labels: VERB (0.9998)]
Span [8]: "."   [− Labels: PUNCT (1.0)]

So, the words "Ich" and "they" are labeled as pronouns (PRON), while "liebe" and "say" are labeled as verbs (VERB) in the multilingual sentence "Ich liebe Berlin, as they say".


Training: Script to train this model

The following Flair script was used to train this model:

from flair.data import MultiCorpus
from flair.datasets import UD_ENGLISH, UD_GERMAN, UD_FRENCH, UD_ITALIAN, UD_POLISH, UD_DUTCH, UD_CZECH, \
    UD_DANISH, UD_SPANISH, UD_SWEDISH, UD_NORWEGIAN, UD_FINNISH
from flair.embeddings import StackedEmbeddings, FlairEmbeddings

# 1. make a multi corpus consisting of 12 UD treebanks (in_memory=False here because this corpus becomes large)
corpus = MultiCorpus([
    UD_ENGLISH(in_memory=False),
    UD_GERMAN(in_memory=False),
    UD_DUTCH(in_memory=False),
    UD_FRENCH(in_memory=False),
    UD_ITALIAN(in_memory=False),
    UD_SPANISH(in_memory=False),
    UD_POLISH(in_memory=False),
    UD_CZECH(in_memory=False),
    UD_DANISH(in_memory=False),
    UD_SWEDISH(in_memory=False),
    UD_NORWEGIAN(in_memory=False),
    UD_FINNISH(in_memory=False),
])

# 2. what tag do we want to predict?
tag_type = 'upos'

# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)

# 4. initialize each embedding we use
embedding_types = [

    # contextual string embeddings, forward
    FlairEmbeddings('multi-forward'),

    # contextual string embeddings, backward
    FlairEmbeddings('multi-backward'),
]

# embedding stack consists of Flair and GloVe embeddings
embeddings = StackedEmbeddings(embeddings=embedding_types)

# 5. initialize sequence tagger
from flair.models import SequenceTagger

tagger = SequenceTagger(hidden_size=256,
                        embeddings=embeddings,
                        tag_dictionary=tag_dictionary,
                        tag_type=tag_type,
                        use_crf=False)

# 6. initialize trainer
from flair.trainers import ModelTrainer

trainer = ModelTrainer(tagger, corpus)

# 7. run training
trainer.train('resources/taggers/upos-multi',
              train_with_dev=True,
              max_epochs=150)

Cite

Please cite the following paper when using this model.

@inproceedings{akbik2018coling,
  title={Contextual String Embeddings for Sequence Labeling},
  author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
  booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
  pages     = {1638--1649},
  year      = {2018}
}

Issues?

The Flair issue tracker is available here.

Downloads last month
783
Hosted inference API
Token Classification
This model can be loaded on the Inference API on-demand.