File size: 4,970 Bytes
772cf50
 
 
 
 
 
 
57520be
772cf50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ffb32d
772cf50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ffb32d
 
 
 
772cf50
 
 
ed938e8
772cf50
 
 
 
 
 
 
 
 
 
6ffb32d
772cf50
 
6ffb32d
 
 
 
 
 
772cf50
 
6ffb32d
772cf50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ffb32d
772cf50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
---
tags:
- flair
- token-classification
- sequence-tagger-model
language: en
datasets:
- ontonotes
inference: false
---

## English Part-of-Speech Tagging in Flair (default model)

This is the standard part-of-speech tagging model for English that ships with [Flair](https://github.com/flairNLP/flair/).

F1-Score: **98,19** (Ontonotes)

Predicts fine-grained POS tags:

| **tag**                        | **meaning** |
|---------------------------------|-----------|
|ADD        | Email |
|AFX        | Affix |
|CC         | Coordinating conjunction  |
|CD         | Cardinal number |
|DT         | Determiner |
|EX         | Existential there |
|FW         | Foreign word |
|HYPH       | Hyphen |
|IN        | Preposition or subordinating conjunction |
|JJ         | Adjective |
|JJR        |Adjective, comparative |
|JJS        | Adjective, superlative |
|LS         | List item marker  |
|MD         | Modal |
|NFP        | Superfluous punctuation |
|NN        | Noun, singular or mass |
|NNP        |Proper noun, singular |
|NNPS       | Proper noun, plural |
|NNS        |Noun, plural |
|PDT        | Predeterminer |
|POS        | Possessive ending |
|PRP        | Personal pronoun |
|PRP$       | Possessive pronoun |
|RB         | Adverb |
|RBR        | Adverb, comparative |
|RBS        | Adverb, superlative |
|RP         | Particle |
|SYM        | Symbol |
|TO         | to |
|UH         | Interjection |
|VB         | Verb, base form |
|VBD       | Verb, past tense |
|VBG        | Verb, gerund or present participle |
|VBN        | Verb, past participle |
|VBP        | Verb, non-3rd person singular present |
|VBZ        | Verb, 3rd person singular present |
|WDT        | Wh-determiner |
|WP        | Wh-pronoun |
|WP$        | Possessive wh-pronoun |
|WRB        | Wh-adverb |
|XX         | Unknown |



Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF.

---

### Demo: How to use in Flair

Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)

```python
from flair.data import Sentence
from flair.models import SequenceTagger

# load tagger
tagger = SequenceTagger.load("flair/pos-english")

# make example sentence
sentence = Sentence("I love Berlin.")

# predict NER tags
tagger.predict(sentence)

# print sentence
print(sentence)

# print predicted NER spans
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('pos'):
    print(entity)

```

This yields the following output:
```
Span [1]: "I"   [− Labels: PRP (1.0)]
Span [2]: "love"   [− Labels: VBP (1.0)]
Span [3]: "Berlin"   [− Labels: NNP (0.9999)]
Span [4]: "."   [− Labels: . (1.0)]

```

So, the word "*I*" is labeled as a **pronoun** (PRP),  "*love*" is labeled as a **verb** (VBP) and "*Berlin*" is labeled as a **proper noun** (NNP) in the sentence "*I love Berlin*". 


---

### Training: Script to train this model

The following Flair script was used to train this model: 

```python
from flair.data import Corpus
from flair.datasets import ColumnCorpus
from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings

# 1. load the corpus (Ontonotes does not ship with Flair, you need to download and reformat into a column format yourself)
corpus: Corpus = ColumnCorpus(
                "resources/tasks/onto-ner",
                column_format={0: "text", 1: "pos", 2: "upos", 3: "ner"},
                tag_to_bioes="ner",
            )

# 2. what tag do we want to predict?
tag_type = 'pos'

# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)

# 4. initialize each embedding we use
embedding_types = [

    # contextual string embeddings, forward
    FlairEmbeddings('news-forward'),

    # contextual string embeddings, backward
    FlairEmbeddings('news-backward'),
]

# embedding stack consists of Flair and GloVe embeddings
embeddings = StackedEmbeddings(embeddings=embedding_types)

# 5. initialize sequence tagger
from flair.models import SequenceTagger

tagger = SequenceTagger(hidden_size=256,
                        embeddings=embeddings,
                        tag_dictionary=tag_dictionary,
                        tag_type=tag_type)

# 6. initialize trainer
from flair.trainers import ModelTrainer

trainer = ModelTrainer(tagger, corpus)

# 7. run training
trainer.train('resources/taggers/pos-english',
              train_with_dev=True,
              max_epochs=150)
```



---

### Cite

Please cite the following paper when using this model.

```
@inproceedings{akbik2018coling,
  title={Contextual String Embeddings for Sequence Labeling},
  author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
  booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
  pages     = {1638--1649},
  year      = {2018}
}
```

---

### Issues?

The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).