File size: 4,970 Bytes
772cf50 57520be 772cf50 6ffb32d 772cf50 6ffb32d 772cf50 ed938e8 772cf50 6ffb32d 772cf50 6ffb32d 772cf50 6ffb32d 772cf50 6ffb32d 772cf50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
---
tags:
- flair
- token-classification
- sequence-tagger-model
language: en
datasets:
- ontonotes
inference: false
---
## English Part-of-Speech Tagging in Flair (default model)
This is the standard part-of-speech tagging model for English that ships with [Flair](https://github.com/flairNLP/flair/).
F1-Score: **98,19** (Ontonotes)
Predicts fine-grained POS tags:
| **tag** | **meaning** |
|---------------------------------|-----------|
|ADD | Email |
|AFX | Affix |
|CC | Coordinating conjunction |
|CD | Cardinal number |
|DT | Determiner |
|EX | Existential there |
|FW | Foreign word |
|HYPH | Hyphen |
|IN | Preposition or subordinating conjunction |
|JJ | Adjective |
|JJR |Adjective, comparative |
|JJS | Adjective, superlative |
|LS | List item marker |
|MD | Modal |
|NFP | Superfluous punctuation |
|NN | Noun, singular or mass |
|NNP |Proper noun, singular |
|NNPS | Proper noun, plural |
|NNS |Noun, plural |
|PDT | Predeterminer |
|POS | Possessive ending |
|PRP | Personal pronoun |
|PRP$ | Possessive pronoun |
|RB | Adverb |
|RBR | Adverb, comparative |
|RBS | Adverb, superlative |
|RP | Particle |
|SYM | Symbol |
|TO | to |
|UH | Interjection |
|VB | Verb, base form |
|VBD | Verb, past tense |
|VBG | Verb, gerund or present participle |
|VBN | Verb, past participle |
|VBP | Verb, non-3rd person singular present |
|VBZ | Verb, 3rd person singular present |
|WDT | Wh-determiner |
|WP | Wh-pronoun |
|WP$ | Possessive wh-pronoun |
|WRB | Wh-adverb |
|XX | Unknown |
Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF.
---
### Demo: How to use in Flair
Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
```python
from flair.data import Sentence
from flair.models import SequenceTagger
# load tagger
tagger = SequenceTagger.load("flair/pos-english")
# make example sentence
sentence = Sentence("I love Berlin.")
# predict NER tags
tagger.predict(sentence)
# print sentence
print(sentence)
# print predicted NER spans
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('pos'):
print(entity)
```
This yields the following output:
```
Span [1]: "I" [− Labels: PRP (1.0)]
Span [2]: "love" [− Labels: VBP (1.0)]
Span [3]: "Berlin" [− Labels: NNP (0.9999)]
Span [4]: "." [− Labels: . (1.0)]
```
So, the word "*I*" is labeled as a **pronoun** (PRP), "*love*" is labeled as a **verb** (VBP) and "*Berlin*" is labeled as a **proper noun** (NNP) in the sentence "*I love Berlin*".
---
### Training: Script to train this model
The following Flair script was used to train this model:
```python
from flair.data import Corpus
from flair.datasets import ColumnCorpus
from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings
# 1. load the corpus (Ontonotes does not ship with Flair, you need to download and reformat into a column format yourself)
corpus: Corpus = ColumnCorpus(
"resources/tasks/onto-ner",
column_format={0: "text", 1: "pos", 2: "upos", 3: "ner"},
tag_to_bioes="ner",
)
# 2. what tag do we want to predict?
tag_type = 'pos'
# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
# 4. initialize each embedding we use
embedding_types = [
# contextual string embeddings, forward
FlairEmbeddings('news-forward'),
# contextual string embeddings, backward
FlairEmbeddings('news-backward'),
]
# embedding stack consists of Flair and GloVe embeddings
embeddings = StackedEmbeddings(embeddings=embedding_types)
# 5. initialize sequence tagger
from flair.models import SequenceTagger
tagger = SequenceTagger(hidden_size=256,
embeddings=embeddings,
tag_dictionary=tag_dictionary,
tag_type=tag_type)
# 6. initialize trainer
from flair.trainers import ModelTrainer
trainer = ModelTrainer(tagger, corpus)
# 7. run training
trainer.train('resources/taggers/pos-english',
train_with_dev=True,
max_epochs=150)
```
---
### Cite
Please cite the following paper when using this model.
```
@inproceedings{akbik2018coling,
title={Contextual String Embeddings for Sequence Labeling},
author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
pages = {1638--1649},
year = {2018}
}
```
---
### Issues?
The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
|