initial model commit
Browse files- README.md +184 -0
- loss.tsv +151 -0
- pytorch_model.bin +3 -0
- training.log +0 -0
README.md
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- flair
|
4 |
+
- token-classification
|
5 |
+
- sequence-tagger-model
|
6 |
+
language: en
|
7 |
+
datasets:
|
8 |
+
- conll2000
|
9 |
+
inference: false
|
10 |
+
---
|
11 |
+
|
12 |
+
## English Part-of-Speech Tagging in Flair (default model)
|
13 |
+
|
14 |
+
This is the standard part-of-speech tagging model for English that ships with [Flair](https://github.com/flairNLP/flair/).
|
15 |
+
|
16 |
+
F1-Score: **98,19** (Ontonotes)
|
17 |
+
|
18 |
+
Predicts fine-grained POS tags:
|
19 |
+
|
20 |
+
| **tag** | **meaning** |
|
21 |
+
|---------------------------------|-----------|
|
22 |
+
|ADD | Email |
|
23 |
+
|AFX | Affix |
|
24 |
+
|CC | Coordinating conjunction |
|
25 |
+
|CD | Cardinal number |
|
26 |
+
|DT | Determiner |
|
27 |
+
|EX | Existential there |
|
28 |
+
|FW | Foreign word |
|
29 |
+
|HYPH | Hyphen |
|
30 |
+
|IN | Preposition or subordinating conjunction |
|
31 |
+
|JJ | Adjective |
|
32 |
+
|JJR |Adjective, comparative |
|
33 |
+
|JJS | Adjective, superlative |
|
34 |
+
|LS | List item marker |
|
35 |
+
|MD | Modal |
|
36 |
+
|NFP | Superfluous punctuation |
|
37 |
+
|NN | Noun, singular or mass |
|
38 |
+
|NNP |Proper noun, singular |
|
39 |
+
|NNPS | Proper noun, plural |
|
40 |
+
|NNS |Noun, plural |
|
41 |
+
|PDT | Predeterminer |
|
42 |
+
|POS | Possessive ending |
|
43 |
+
|PRP | Personal pronoun |
|
44 |
+
|PRP$ | Possessive pronoun |
|
45 |
+
|RB | Adverb |
|
46 |
+
|RBR | Adverb, comparative |
|
47 |
+
|RBS | Adverb, superlative |
|
48 |
+
|RP | Particle |
|
49 |
+
|SYM | Symbol |
|
50 |
+
|TO | to |
|
51 |
+
|UH | Interjection |
|
52 |
+
|VB | Verb, base form |
|
53 |
+
|VBD | Verb, past tense |
|
54 |
+
|VBG | Verb, gerund or present participle |
|
55 |
+
|VBN | Verb, past participle |
|
56 |
+
|VBP | Verb, non-3rd person singular present |
|
57 |
+
|VBZ | Verb, 3rd person singular present |
|
58 |
+
|WDT | Wh-determiner |
|
59 |
+
|WP | Wh-pronoun |
|
60 |
+
|WP$ | Possessive wh-pronoun |
|
61 |
+
|WRB | Wh-adverb |
|
62 |
+
|XX | Unknown |
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF.
|
67 |
+
|
68 |
+
---
|
69 |
+
|
70 |
+
### Demo: How to use in Flair
|
71 |
+
|
72 |
+
Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
|
73 |
+
|
74 |
+
```python
|
75 |
+
from flair.data import Sentence
|
76 |
+
from flair.models import SequenceTagger
|
77 |
+
|
78 |
+
# load tagger
|
79 |
+
tagger = SequenceTagger.load("flair/pos-english")
|
80 |
+
|
81 |
+
# make example sentence
|
82 |
+
sentence = Sentence("I love Berlin")
|
83 |
+
|
84 |
+
# predict NER tags
|
85 |
+
tagger.predict(sentence)
|
86 |
+
|
87 |
+
# print sentence
|
88 |
+
print(sentence)
|
89 |
+
|
90 |
+
# print predicted NER spans
|
91 |
+
print('The following NER tags are found:')
|
92 |
+
# iterate over entities and print
|
93 |
+
for entity in sentence.get_spans('pos'):
|
94 |
+
print(entity)
|
95 |
+
|
96 |
+
```
|
97 |
+
|
98 |
+
This yields the following output:
|
99 |
+
```
|
100 |
+
Span [1,2,3]: "The happy man" [− Labels: NP (0.9958)]
|
101 |
+
Span [4,5,6]: "has been eating" [− Labels: VP (0.8759)]
|
102 |
+
Span [7]: "at" [− Labels: PP (1.0)]
|
103 |
+
Span [8,9]: "the diner" [− Labels: NP (0.9991)]
|
104 |
+
|
105 |
+
```
|
106 |
+
|
107 |
+
So, the spans "*The happy man*" and "*the diner*" are labeled as **noun phrases** (NP) and "*has been eating*" is labeled as a **verb phrase** (VP) in the sentence "*The happy man has been eating at the diner*".
|
108 |
+
|
109 |
+
|
110 |
+
---
|
111 |
+
|
112 |
+
### Training: Script to train this model
|
113 |
+
|
114 |
+
The following Flair script was used to train this model:
|
115 |
+
|
116 |
+
```python
|
117 |
+
from flair.data import Corpus
|
118 |
+
from flair.datasets import CONLL_2000
|
119 |
+
from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings
|
120 |
+
|
121 |
+
# 1. get the corpus
|
122 |
+
corpus: Corpus = CONLL_2000()
|
123 |
+
|
124 |
+
# 2. what tag do we want to predict?
|
125 |
+
tag_type = 'np'
|
126 |
+
|
127 |
+
# 3. make the tag dictionary from the corpus
|
128 |
+
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
|
129 |
+
|
130 |
+
# 4. initialize each embedding we use
|
131 |
+
embedding_types = [
|
132 |
+
|
133 |
+
# contextual string embeddings, forward
|
134 |
+
FlairEmbeddings('news-forward'),
|
135 |
+
|
136 |
+
# contextual string embeddings, backward
|
137 |
+
FlairEmbeddings('news-backward'),
|
138 |
+
]
|
139 |
+
|
140 |
+
# embedding stack consists of Flair and GloVe embeddings
|
141 |
+
embeddings = StackedEmbeddings(embeddings=embedding_types)
|
142 |
+
|
143 |
+
# 5. initialize sequence tagger
|
144 |
+
from flair.models import SequenceTagger
|
145 |
+
|
146 |
+
tagger = SequenceTagger(hidden_size=256,
|
147 |
+
embeddings=embeddings,
|
148 |
+
tag_dictionary=tag_dictionary,
|
149 |
+
tag_type=tag_type)
|
150 |
+
|
151 |
+
# 6. initialize trainer
|
152 |
+
from flair.trainers import ModelTrainer
|
153 |
+
|
154 |
+
trainer = ModelTrainer(tagger, corpus)
|
155 |
+
|
156 |
+
# 7. run training
|
157 |
+
trainer.train('resources/taggers/chunk-english',
|
158 |
+
train_with_dev=True,
|
159 |
+
max_epochs=150)
|
160 |
+
```
|
161 |
+
|
162 |
+
|
163 |
+
|
164 |
+
---
|
165 |
+
|
166 |
+
### Cite
|
167 |
+
|
168 |
+
Please cite the following paper when using this model.
|
169 |
+
|
170 |
+
```
|
171 |
+
@inproceedings{akbik2018coling,
|
172 |
+
title={Contextual String Embeddings for Sequence Labeling},
|
173 |
+
author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
|
174 |
+
booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
|
175 |
+
pages = {1638--1649},
|
176 |
+
year = {2018}
|
177 |
+
}
|
178 |
+
```
|
179 |
+
|
180 |
+
---
|
181 |
+
|
182 |
+
### Issues?
|
183 |
+
|
184 |
+
The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
|
loss.tsv
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS
|
2 |
+
1 20:52:08 0 0.1000 4.440161232385996
|
3 |
+
2 21:02:54 0 0.1000 2.5081334869816616
|
4 |
+
3 21:13:41 0 0.1000 2.1583339795976313
|
5 |
+
4 21:24:30 0 0.1000 1.9826479059570241
|
6 |
+
5 21:35:13 0 0.1000 1.8439768840007063
|
7 |
+
6 21:46:04 0 0.1000 1.7556186997440626
|
8 |
+
7 21:56:58 0 0.1000 1.6729187929180434
|
9 |
+
8 22:07:41 0 0.1000 1.6175819635391235
|
10 |
+
9 22:18:22 0 0.1000 1.567191819548607
|
11 |
+
10 22:28:59 0 0.1000 1.5158289558707543
|
12 |
+
11 22:39:33 0 0.1000 1.4816847196390044
|
13 |
+
12 22:50:13 0 0.1000 1.4487488953684862
|
14 |
+
13 23:00:55 0 0.1000 1.4116378486156465
|
15 |
+
14 23:11:41 0 0.1000 1.3804849133289085
|
16 |
+
15 23:22:21 0 0.1000 1.3604626842939629
|
17 |
+
16 23:32:56 0 0.1000 1.3348652415567974
|
18 |
+
17 23:43:29 0 0.1000 1.3190998460099381
|
19 |
+
18 23:54:02 0 0.1000 1.300972046728404
|
20 |
+
19 00:04:36 0 0.1000 1.2754099613540577
|
21 |
+
20 00:15:11 0 0.1000 1.2620930742880083
|
22 |
+
21 00:25:48 0 0.1000 1.2427125974421231
|
23 |
+
22 00:36:23 0 0.1000 1.2239304436490221
|
24 |
+
23 00:47:03 0 0.1000 1.2220602732222035
|
25 |
+
24 00:57:53 0 0.1000 1.207376890598603
|
26 |
+
25 01:08:41 0 0.1000 1.191661370452845
|
27 |
+
26 01:19:19 0 0.1000 1.1854410221779121
|
28 |
+
27 01:29:54 0 0.1000 1.1639552125953279
|
29 |
+
28 01:40:32 1 0.1000 1.1674171195390088
|
30 |
+
29 01:51:16 0 0.1000 1.1548268491142202
|
31 |
+
30 02:02:03 0 0.1000 1.1502379114560362
|
32 |
+
31 02:12:43 0 0.1000 1.1394139466195736
|
33 |
+
32 02:23:23 0 0.1000 1.1333867625020584
|
34 |
+
33 02:33:57 0 0.1000 1.1169679287469612
|
35 |
+
34 02:44:23 1 0.1000 1.1183975887860893
|
36 |
+
35 02:54:51 0 0.1000 1.1031492047827198
|
37 |
+
36 03:05:17 1 0.1000 1.106654071999046
|
38 |
+
37 03:15:55 0 0.1000 1.0981387158384863
|
39 |
+
38 03:26:23 0 0.1000 1.091500723361969
|
40 |
+
39 03:36:48 0 0.1000 1.078726376306336
|
41 |
+
40 03:47:12 0 0.1000 1.0701815563665247
|
42 |
+
41 03:57:38 0 0.1000 1.0676479135256893
|
43 |
+
42 04:08:04 1 0.1000 1.0709096380449692
|
44 |
+
43 04:18:31 0 0.1000 1.0584135180599286
|
45 |
+
44 04:29:01 1 0.1000 1.0603101778592703
|
46 |
+
45 04:39:33 2 0.1000 1.0599101366299504
|
47 |
+
46 04:50:16 0 0.1000 1.054228850344442
|
48 |
+
47 05:00:49 0 0.1000 1.0398632440252125
|
49 |
+
48 05:11:17 1 0.1000 1.043083128501784
|
50 |
+
49 05:21:45 0 0.1000 1.032125227125186
|
51 |
+
50 05:32:13 0 0.1000 1.0312004477797814
|
52 |
+
51 05:42:41 0 0.1000 1.0224073643954295
|
53 |
+
52 05:53:08 1 0.1000 1.0266485528676015
|
54 |
+
53 06:03:34 2 0.1000 1.0261119301813952
|
55 |
+
54 06:13:59 0 0.1000 1.0190398614811447
|
56 |
+
55 06:24:24 0 0.1000 1.0189366444214336
|
57 |
+
56 06:34:49 0 0.1000 1.0186952622656553
|
58 |
+
57 06:45:15 0 0.1000 1.014220685722693
|
59 |
+
58 06:55:40 0 0.1000 1.012852365082165
|
60 |
+
59 07:06:06 0 0.1000 1.0120688318419007
|
61 |
+
60 07:16:40 0 0.1000 0.9965613165216626
|
62 |
+
61 07:27:18 0 0.1000 0.9953716235115843
|
63 |
+
62 07:38:02 1 0.1000 1.001837087363567
|
64 |
+
63 07:48:53 2 0.1000 1.006256850496778
|
65 |
+
64 07:59:37 3 0.1000 0.9984066509525731
|
66 |
+
65 08:10:10 0 0.1000 0.9925584944351664
|
67 |
+
66 08:20:57 0 0.1000 0.9878121419785157
|
68 |
+
67 08:31:51 1 0.1000 0.9894720081225881
|
69 |
+
68 08:42:45 2 0.1000 0.992577243672227
|
70 |
+
69 08:53:30 3 0.1000 0.9881071116227024
|
71 |
+
70 09:04:04 0 0.1000 0.9730017746169612
|
72 |
+
71 09:14:40 1 0.1000 0.991095079498471
|
73 |
+
72 09:25:23 2 0.1000 0.9847190643818873
|
74 |
+
73 09:36:13 3 0.1000 0.9873424543074841
|
75 |
+
74 09:47:25 4 0.1000 0.9847348382225577
|
76 |
+
75 09:58:33 0 0.0500 0.9315909094967932
|
77 |
+
76 10:09:28 0 0.0500 0.9022325243252628
|
78 |
+
77 10:20:20 0 0.0500 0.8902195256048778
|
79 |
+
78 10:31:19 0 0.0500 0.8723525498835546
|
80 |
+
79 10:42:19 0 0.0500 0.8651090322125633
|
81 |
+
80 10:53:15 0 0.0500 0.8573019430322467
|
82 |
+
81 11:04:12 0 0.0500 0.8505386984460759
|
83 |
+
82 11:15:07 0 0.0500 0.8416592055446697
|
84 |
+
83 11:26:06 0 0.0500 0.840492116291568
|
85 |
+
84 11:37:04 0 0.0500 0.8269484595082841
|
86 |
+
85 11:48:07 0 0.0500 0.8259104798312457
|
87 |
+
86 11:58:57 0 0.0500 0.8142883822940431
|
88 |
+
87 12:09:37 1 0.0500 0.815013348145305
|
89 |
+
88 12:20:15 2 0.0500 0.81506850761625
|
90 |
+
89 12:30:54 0 0.0500 0.8126563506756189
|
91 |
+
90 12:41:32 0 0.0500 0.8073379599373296
|
92 |
+
91 12:52:12 0 0.0500 0.8044627973774694
|
93 |
+
92 13:02:46 0 0.0500 0.7935339151126034
|
94 |
+
93 13:13:17 1 0.0500 0.7999999434318182
|
95 |
+
94 13:23:57 0 0.0500 0.7855544437777321
|
96 |
+
95 13:34:30 0 0.0500 0.7852934920450426
|
97 |
+
96 13:45:07 0 0.0500 0.7823002677481129
|
98 |
+
97 13:55:44 1 0.0500 0.7847004000195917
|
99 |
+
98 14:06:25 0 0.0500 0.7812922019103788
|
100 |
+
99 14:17:07 0 0.0500 0.7765507183715983
|
101 |
+
100 14:27:54 0 0.0500 0.7713469461618729
|
102 |
+
101 14:38:45 0 0.0500 0.7689368553431529
|
103 |
+
102 14:49:40 0 0.0500 0.7649135219600965
|
104 |
+
103 15:00:28 1 0.0500 0.7698996701667894
|
105 |
+
104 15:11:35 2 0.0500 0.7652068016439114
|
106 |
+
105 15:22:40 0 0.0500 0.7561835708820595
|
107 |
+
106 15:33:42 1 0.0500 0.7572112994149046
|
108 |
+
107 15:44:39 2 0.0500 0.757130035375649
|
109 |
+
108 15:55:31 0 0.0500 0.749976492377947
|
110 |
+
109 16:06:31 0 0.0500 0.7495477832600755
|
111 |
+
110 16:17:43 0 0.0500 0.7494549221025323
|
112 |
+
111 16:28:54 1 0.0500 0.7499363383257164
|
113 |
+
112 16:40:03 0 0.0500 0.742774221880256
|
114 |
+
113 16:51:15 0 0.0500 0.7355138572881806
|
115 |
+
114 17:02:32 1 0.0500 0.7430367245707872
|
116 |
+
115 17:13:47 2 0.0500 0.7362946672597022
|
117 |
+
116 17:25:03 0 0.0500 0.7296903043029443
|
118 |
+
117 17:36:24 1 0.0500 0.7316516229285384
|
119 |
+
118 17:47:40 2 0.0500 0.7298012239190768
|
120 |
+
119 17:58:58 0 0.0500 0.725832704181941
|
121 |
+
120 18:10:14 1 0.0500 0.7342031982147469
|
122 |
+
121 18:21:33 2 0.0500 0.7373537805563999
|
123 |
+
122 18:32:57 0 0.0500 0.720425709441023
|
124 |
+
123 18:44:06 0 0.0500 0.7198627921770204
|
125 |
+
124 18:55:14 0 0.0500 0.7186782485246659
|
126 |
+
125 19:06:19 0 0.0500 0.7143201651550689
|
127 |
+
126 19:16:59 1 0.0500 0.7179321614076506
|
128 |
+
127 19:27:32 2 0.0500 0.7232625953037783
|
129 |
+
128 19:38:01 3 0.0500 0.7178108556877892
|
130 |
+
129 19:48:24 4 0.0500 0.7165789126000315
|
131 |
+
130 19:58:50 0 0.0250 0.6979938816518154
|
132 |
+
131 20:09:13 0 0.0250 0.6868638727068901
|
133 |
+
132 20:19:38 0 0.0250 0.6839717018829202
|
134 |
+
133 20:30:03 0 0.0250 0.6678646053908006
|
135 |
+
134 20:40:32 1 0.0250 0.6725394108554102
|
136 |
+
135 20:50:55 0 0.0250 0.667677206284595
|
137 |
+
136 21:01:21 1 0.0250 0.6694862040596188
|
138 |
+
137 21:11:51 0 0.0250 0.6669475417598238
|
139 |
+
138 21:22:47 0 0.0250 0.6587011924892102
|
140 |
+
139 21:33:48 1 0.0250 0.6638432242116838
|
141 |
+
140 21:44:53 0 0.0250 0.656541748890337
|
142 |
+
141 21:55:59 0 0.0250 0.6493324265671226
|
143 |
+
142 22:07:02 1 0.0250 0.6537159925249387
|
144 |
+
143 22:18:05 0 0.0250 0.644002894607355
|
145 |
+
144 22:29:04 0 0.0250 0.643809141061216
|
146 |
+
145 22:39:50 1 0.0250 0.6446365239035409
|
147 |
+
146 22:50:34 0 0.0250 0.6404419986144552
|
148 |
+
147 23:01:13 0 0.0250 0.6318214131301304
|
149 |
+
148 23:11:56 1 0.0250 0.6437739029076864
|
150 |
+
149 23:22:52 2 0.0250 0.6382293396176032
|
151 |
+
150 23:33:44 0 0.0250 0.6294730271258444
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68330eb5a23b498ae33e13ff43799d95471ea29b5ef22e504dea809cf34e7fbc
|
3 |
+
size 249072763
|
training.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|