File size: 58,645 Bytes
5dbaccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
2021-01-16 03:26:26,142 ----------------------------------------------------------------------------------------------------
2021-01-16 03:26:26,146 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): XLMRobertaModel(
      (embeddings): RobertaEmbeddings(
        (word_embeddings): Embedding(250002, 1024, padding_idx=1)
        (position_embeddings): Embedding(514, 1024, padding_idx=1)
        (token_type_embeddings): Embedding(1, 1024)
        (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): RobertaEncoder(
        (layer): ModuleList(
          (0): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (1): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (2): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (3): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (4): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (5): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (6): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (7): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (8): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (9): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (10): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (11): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (12): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (13): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (14): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (15): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (16): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (17): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (18): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (19): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (20): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (21): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (22): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (23): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): RobertaPooler(
        (dense): Linear(in_features=1024, out_features=1024, bias=True)
        (activation): Tanh()
      )
    )
  )
  (word_dropout): WordDropout(p=0.05)
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1024, out_features=20, bias=True)
  (beta): 1.0
  (weights): None
  (weight_tensor) None
)"
2021-01-16 03:26:26,148 ----------------------------------------------------------------------------------------------------
2021-01-16 03:26:26,148 Corpus: "Corpus: 8323 train + 1915 dev + 1517 test sentences"
2021-01-16 03:26:26,148 ----------------------------------------------------------------------------------------------------
2021-01-16 03:26:26,148 Parameters:
2021-01-16 03:26:26,148  - learning_rate: "5e-06"
2021-01-16 03:26:26,148  - mini_batch_size: "4"
2021-01-16 03:26:26,148  - patience: "3"
2021-01-16 03:26:26,148  - anneal_factor: "0.5"
2021-01-16 03:26:26,148  - max_epochs: "20"
2021-01-16 03:26:26,148  - shuffle: "True"
2021-01-16 03:26:26,148  - train_with_dev: "True"
2021-01-16 03:26:26,148  - batch_growth_annealing: "False"
2021-01-16 03:26:26,149 ----------------------------------------------------------------------------------------------------
2021-01-16 03:26:26,149 Model training base path: "resources/contextdrop/flert-es-ft+dev-xlm-roberta-large-context+drop-64-True-258"
2021-01-16 03:26:26,149 ----------------------------------------------------------------------------------------------------
2021-01-16 03:26:26,149 Device: cuda:3
2021-01-16 03:26:26,149 ----------------------------------------------------------------------------------------------------
2021-01-16 03:26:26,149 Embeddings storage mode: none
2021-01-16 03:26:26,161 ----------------------------------------------------------------------------------------------------
2021-01-16 03:28:04,650 epoch 1 - iter 256/2560 - loss 0.87027155 - samples/sec: 10.40 - lr: 0.000005
2021-01-16 03:29:42,988 epoch 1 - iter 512/2560 - loss 0.59530026 - samples/sec: 10.41 - lr: 0.000005
2021-01-16 03:31:21,817 epoch 1 - iter 768/2560 - loss 0.52507711 - samples/sec: 10.36 - lr: 0.000005
2021-01-16 03:33:00,647 epoch 1 - iter 1024/2560 - loss 0.45703199 - samples/sec: 10.36 - lr: 0.000005
2021-01-16 03:34:42,020 epoch 1 - iter 1280/2560 - loss 0.41694313 - samples/sec: 10.10 - lr: 0.000005
2021-01-16 03:36:21,509 epoch 1 - iter 1536/2560 - loss 0.38192728 - samples/sec: 10.29 - lr: 0.000005
2021-01-16 03:38:00,214 epoch 1 - iter 1792/2560 - loss 0.36367874 - samples/sec: 10.38 - lr: 0.000005
2021-01-16 03:39:38,871 epoch 1 - iter 2048/2560 - loss 0.34546215 - samples/sec: 10.38 - lr: 0.000005
2021-01-16 03:41:16,409 epoch 1 - iter 2304/2560 - loss 0.33346538 - samples/sec: 10.50 - lr: 0.000005
2021-01-16 03:42:54,136 epoch 1 - iter 2560/2560 - loss 0.32667036 - samples/sec: 10.48 - lr: 0.000005
2021-01-16 03:42:54,138 ----------------------------------------------------------------------------------------------------
2021-01-16 03:42:54,138 EPOCH 1 done: loss 0.3267 - lr 0.0000050
2021-01-16 03:42:54,138 BAD EPOCHS (no improvement): 4
2021-01-16 03:42:54,141 ----------------------------------------------------------------------------------------------------
2021-01-16 03:44:32,764 epoch 2 - iter 256/2560 - loss 0.21108762 - samples/sec: 10.38 - lr: 0.000005
2021-01-16 03:46:11,253 epoch 2 - iter 512/2560 - loss 0.22128268 - samples/sec: 10.40 - lr: 0.000005
2021-01-16 03:47:49,772 epoch 2 - iter 768/2560 - loss 0.22246430 - samples/sec: 10.39 - lr: 0.000005
2021-01-16 03:49:28,129 epoch 2 - iter 1024/2560 - loss 0.21358276 - samples/sec: 10.41 - lr: 0.000005
2021-01-16 03:51:06,924 epoch 2 - iter 1280/2560 - loss 0.21429265 - samples/sec: 10.37 - lr: 0.000005
2021-01-16 03:52:46,984 epoch 2 - iter 1536/2560 - loss 0.21196466 - samples/sec: 10.23 - lr: 0.000005
2021-01-16 03:54:29,705 epoch 2 - iter 1792/2560 - loss 0.21758704 - samples/sec: 9.97 - lr: 0.000005
2021-01-16 03:56:10,481 epoch 2 - iter 2048/2560 - loss 0.21965157 - samples/sec: 10.16 - lr: 0.000005
2021-01-16 03:57:50,615 epoch 2 - iter 2304/2560 - loss 0.21877101 - samples/sec: 10.23 - lr: 0.000005
2021-01-16 03:59:31,158 epoch 2 - iter 2560/2560 - loss 0.21954602 - samples/sec: 10.19 - lr: 0.000005
2021-01-16 03:59:31,160 ----------------------------------------------------------------------------------------------------
2021-01-16 03:59:31,160 EPOCH 2 done: loss 0.2195 - lr 0.0000049
2021-01-16 03:59:31,160 BAD EPOCHS (no improvement): 4
2021-01-16 03:59:31,163 ----------------------------------------------------------------------------------------------------
2021-01-16 04:01:11,656 epoch 3 - iter 256/2560 - loss 0.20612080 - samples/sec: 10.19 - lr: 0.000005
2021-01-16 04:02:51,941 epoch 3 - iter 512/2560 - loss 0.19317841 - samples/sec: 10.21 - lr: 0.000005
2021-01-16 04:04:32,511 epoch 3 - iter 768/2560 - loss 0.19963626 - samples/sec: 10.18 - lr: 0.000005
2021-01-16 04:06:11,909 epoch 3 - iter 1024/2560 - loss 0.19312694 - samples/sec: 10.30 - lr: 0.000005
2021-01-16 04:07:53,866 epoch 3 - iter 1280/2560 - loss 0.19674287 - samples/sec: 10.04 - lr: 0.000005
2021-01-16 04:09:33,688 epoch 3 - iter 1536/2560 - loss 0.19699039 - samples/sec: 10.26 - lr: 0.000005
2021-01-16 04:11:13,497 epoch 3 - iter 1792/2560 - loss 0.19513463 - samples/sec: 10.26 - lr: 0.000005
2021-01-16 04:12:53,541 epoch 3 - iter 2048/2560 - loss 0.19334227 - samples/sec: 10.24 - lr: 0.000005
2021-01-16 04:14:33,916 epoch 3 - iter 2304/2560 - loss 0.19294838 - samples/sec: 10.20 - lr: 0.000005
2021-01-16 04:16:13,001 epoch 3 - iter 2560/2560 - loss 0.19331988 - samples/sec: 10.34 - lr: 0.000005
2021-01-16 04:16:13,003 ----------------------------------------------------------------------------------------------------
2021-01-16 04:16:13,003 EPOCH 3 done: loss 0.1933 - lr 0.0000047
2021-01-16 04:16:13,003 BAD EPOCHS (no improvement): 4
2021-01-16 04:16:13,006 ----------------------------------------------------------------------------------------------------
2021-01-16 04:17:52,069 epoch 4 - iter 256/2560 - loss 0.16853571 - samples/sec: 10.34 - lr: 0.000005
2021-01-16 04:19:31,083 epoch 4 - iter 512/2560 - loss 0.16783710 - samples/sec: 10.34 - lr: 0.000005
2021-01-16 04:21:09,860 epoch 4 - iter 768/2560 - loss 0.17852492 - samples/sec: 10.37 - lr: 0.000005
2021-01-16 04:22:48,222 epoch 4 - iter 1024/2560 - loss 0.18170671 - samples/sec: 10.41 - lr: 0.000005
2021-01-16 04:24:28,304 epoch 4 - iter 1280/2560 - loss 0.17619093 - samples/sec: 10.23 - lr: 0.000005
2021-01-16 04:26:06,542 epoch 4 - iter 1536/2560 - loss 0.18313451 - samples/sec: 10.42 - lr: 0.000005
2021-01-16 04:27:44,976 epoch 4 - iter 1792/2560 - loss 0.18543083 - samples/sec: 10.40 - lr: 0.000005
2021-01-16 04:29:25,900 epoch 4 - iter 2048/2560 - loss 0.18948785 - samples/sec: 10.15 - lr: 0.000005
2021-01-16 04:31:03,494 epoch 4 - iter 2304/2560 - loss 0.18818842 - samples/sec: 10.49 - lr: 0.000005
2021-01-16 04:32:40,881 epoch 4 - iter 2560/2560 - loss 0.18725109 - samples/sec: 10.52 - lr: 0.000005
2021-01-16 04:32:40,883 ----------------------------------------------------------------------------------------------------
2021-01-16 04:32:40,884 EPOCH 4 done: loss 0.1873 - lr 0.0000045
2021-01-16 04:32:40,884 BAD EPOCHS (no improvement): 4
2021-01-16 04:32:40,886 ----------------------------------------------------------------------------------------------------
2021-01-16 04:34:18,022 epoch 5 - iter 256/2560 - loss 0.19665239 - samples/sec: 10.54 - lr: 0.000004
2021-01-16 04:35:54,846 epoch 5 - iter 512/2560 - loss 0.19948870 - samples/sec: 10.58 - lr: 0.000004
2021-01-16 04:37:32,278 epoch 5 - iter 768/2560 - loss 0.19201483 - samples/sec: 10.51 - lr: 0.000004
2021-01-16 04:39:11,686 epoch 5 - iter 1024/2560 - loss 0.18716260 - samples/sec: 10.30 - lr: 0.000004
2021-01-16 04:40:48,941 epoch 5 - iter 1280/2560 - loss 0.17767008 - samples/sec: 10.53 - lr: 0.000004
2021-01-16 04:42:26,151 epoch 5 - iter 1536/2560 - loss 0.17738586 - samples/sec: 10.53 - lr: 0.000004
2021-01-16 04:44:03,440 epoch 5 - iter 1792/2560 - loss 0.17437861 - samples/sec: 10.53 - lr: 0.000004
2021-01-16 04:45:40,641 epoch 5 - iter 2048/2560 - loss 0.17843058 - samples/sec: 10.54 - lr: 0.000004
2021-01-16 04:47:18,726 epoch 5 - iter 2304/2560 - loss 0.17962338 - samples/sec: 10.44 - lr: 0.000004
2021-01-16 04:48:56,938 epoch 5 - iter 2560/2560 - loss 0.17857406 - samples/sec: 10.43 - lr: 0.000004
2021-01-16 04:48:56,941 ----------------------------------------------------------------------------------------------------
2021-01-16 04:48:56,941 EPOCH 5 done: loss 0.1786 - lr 0.0000043
2021-01-16 04:48:56,941 BAD EPOCHS (no improvement): 4
2021-01-16 04:48:56,944 ----------------------------------------------------------------------------------------------------
2021-01-16 04:50:37,578 epoch 6 - iter 256/2560 - loss 0.19558805 - samples/sec: 10.18 - lr: 0.000004
2021-01-16 04:52:15,762 epoch 6 - iter 512/2560 - loss 0.17503759 - samples/sec: 10.43 - lr: 0.000004
2021-01-16 04:53:52,814 epoch 6 - iter 768/2560 - loss 0.17416353 - samples/sec: 10.55 - lr: 0.000004
2021-01-16 04:55:29,984 epoch 6 - iter 1024/2560 - loss 0.16483752 - samples/sec: 10.54 - lr: 0.000004
2021-01-16 04:57:07,349 epoch 6 - iter 1280/2560 - loss 0.16624319 - samples/sec: 10.52 - lr: 0.000004
2021-01-16 04:58:44,378 epoch 6 - iter 1536/2560 - loss 0.16546115 - samples/sec: 10.55 - lr: 0.000004
2021-01-16 05:00:21,884 epoch 6 - iter 1792/2560 - loss 0.16436590 - samples/sec: 10.50 - lr: 0.000004
2021-01-16 05:01:58,951 epoch 6 - iter 2048/2560 - loss 0.16724299 - samples/sec: 10.55 - lr: 0.000004
2021-01-16 05:03:36,482 epoch 6 - iter 2304/2560 - loss 0.16918433 - samples/sec: 10.50 - lr: 0.000004
2021-01-16 05:05:14,584 epoch 6 - iter 2560/2560 - loss 0.16921876 - samples/sec: 10.44 - lr: 0.000004
2021-01-16 05:05:14,587 ----------------------------------------------------------------------------------------------------
2021-01-16 05:05:14,587 EPOCH 6 done: loss 0.1692 - lr 0.0000040
2021-01-16 05:05:14,587 BAD EPOCHS (no improvement): 4
2021-01-16 05:05:14,599 ----------------------------------------------------------------------------------------------------
2021-01-16 05:06:51,663 epoch 7 - iter 256/2560 - loss 0.18482960 - samples/sec: 10.55 - lr: 0.000004
2021-01-16 05:08:28,534 epoch 7 - iter 512/2560 - loss 0.16880554 - samples/sec: 10.57 - lr: 0.000004
2021-01-16 05:10:05,876 epoch 7 - iter 768/2560 - loss 0.16822603 - samples/sec: 10.52 - lr: 0.000004
2021-01-16 05:11:42,818 epoch 7 - iter 1024/2560 - loss 0.17842509 - samples/sec: 10.56 - lr: 0.000004
2021-01-16 05:13:20,349 epoch 7 - iter 1280/2560 - loss 0.16997025 - samples/sec: 10.50 - lr: 0.000004
2021-01-16 05:14:57,279 epoch 7 - iter 1536/2560 - loss 0.16850697 - samples/sec: 10.57 - lr: 0.000004
2021-01-16 05:16:33,604 epoch 7 - iter 1792/2560 - loss 0.16897440 - samples/sec: 10.63 - lr: 0.000004
2021-01-16 05:18:11,130 epoch 7 - iter 2048/2560 - loss 0.16901586 - samples/sec: 10.50 - lr: 0.000004
2021-01-16 05:19:48,742 epoch 7 - iter 2304/2560 - loss 0.16746824 - samples/sec: 10.49 - lr: 0.000004
2021-01-16 05:21:27,376 epoch 7 - iter 2560/2560 - loss 0.16665962 - samples/sec: 10.38 - lr: 0.000004
2021-01-16 05:21:27,378 ----------------------------------------------------------------------------------------------------
2021-01-16 05:21:27,378 EPOCH 7 done: loss 0.1667 - lr 0.0000036
2021-01-16 05:21:27,378 BAD EPOCHS (no improvement): 4
2021-01-16 05:21:27,381 ----------------------------------------------------------------------------------------------------
2021-01-16 05:23:04,098 epoch 8 - iter 256/2560 - loss 0.17170512 - samples/sec: 10.59 - lr: 0.000004
2021-01-16 05:24:40,963 epoch 8 - iter 512/2560 - loss 0.16578343 - samples/sec: 10.57 - lr: 0.000004
2021-01-16 05:26:17,874 epoch 8 - iter 768/2560 - loss 0.15936900 - samples/sec: 10.57 - lr: 0.000004
2021-01-16 05:27:54,684 epoch 8 - iter 1024/2560 - loss 0.16254958 - samples/sec: 10.58 - lr: 0.000003
2021-01-16 05:29:31,674 epoch 8 - iter 1280/2560 - loss 0.16254652 - samples/sec: 10.56 - lr: 0.000003
2021-01-16 05:31:09,021 epoch 8 - iter 1536/2560 - loss 0.16126451 - samples/sec: 10.52 - lr: 0.000003
2021-01-16 05:32:48,943 epoch 8 - iter 1792/2560 - loss 0.15960888 - samples/sec: 10.25 - lr: 0.000003
2021-01-16 05:34:26,910 epoch 8 - iter 2048/2560 - loss 0.16106515 - samples/sec: 10.45 - lr: 0.000003
2021-01-16 05:36:05,072 epoch 8 - iter 2304/2560 - loss 0.15881735 - samples/sec: 10.43 - lr: 0.000003
2021-01-16 05:37:43,202 epoch 8 - iter 2560/2560 - loss 0.16070351 - samples/sec: 10.44 - lr: 0.000003
2021-01-16 05:37:43,204 ----------------------------------------------------------------------------------------------------
2021-01-16 05:37:43,204 EPOCH 8 done: loss 0.1607 - lr 0.0000033
2021-01-16 05:37:43,204 BAD EPOCHS (no improvement): 4
2021-01-16 05:37:43,207 ----------------------------------------------------------------------------------------------------
2021-01-16 05:39:21,420 epoch 9 - iter 256/2560 - loss 0.17227183 - samples/sec: 10.43 - lr: 0.000003
2021-01-16 05:40:59,261 epoch 9 - iter 512/2560 - loss 0.17554657 - samples/sec: 10.47 - lr: 0.000003
2021-01-16 05:42:38,175 epoch 9 - iter 768/2560 - loss 0.16616659 - samples/sec: 10.35 - lr: 0.000003
2021-01-16 05:44:16,618 epoch 9 - iter 1024/2560 - loss 0.16832605 - samples/sec: 10.40 - lr: 0.000003
2021-01-16 05:45:57,429 epoch 9 - iter 1280/2560 - loss 0.16394874 - samples/sec: 10.16 - lr: 0.000003
2021-01-16 05:47:35,957 epoch 9 - iter 1536/2560 - loss 0.16352007 - samples/sec: 10.39 - lr: 0.000003
2021-01-16 05:49:13,705 epoch 9 - iter 1792/2560 - loss 0.16385724 - samples/sec: 10.48 - lr: 0.000003
2021-01-16 05:50:52,424 epoch 9 - iter 2048/2560 - loss 0.16055360 - samples/sec: 10.37 - lr: 0.000003
2021-01-16 05:52:30,508 epoch 9 - iter 2304/2560 - loss 0.16334559 - samples/sec: 10.44 - lr: 0.000003
2021-01-16 05:54:08,468 epoch 9 - iter 2560/2560 - loss 0.16240605 - samples/sec: 10.45 - lr: 0.000003
2021-01-16 05:54:08,470 ----------------------------------------------------------------------------------------------------
2021-01-16 05:54:08,470 EPOCH 9 done: loss 0.1624 - lr 0.0000029
2021-01-16 05:54:08,470 BAD EPOCHS (no improvement): 4
2021-01-16 05:54:08,473 ----------------------------------------------------------------------------------------------------
2021-01-16 05:55:47,128 epoch 10 - iter 256/2560 - loss 0.16313144 - samples/sec: 10.38 - lr: 0.000003
2021-01-16 05:57:25,407 epoch 10 - iter 512/2560 - loss 0.15020732 - samples/sec: 10.42 - lr: 0.000003
2021-01-16 05:59:03,413 epoch 10 - iter 768/2560 - loss 0.15983365 - samples/sec: 10.45 - lr: 0.000003
2021-01-16 06:00:41,548 epoch 10 - iter 1024/2560 - loss 0.15880243 - samples/sec: 10.44 - lr: 0.000003
2021-01-16 06:02:19,846 epoch 10 - iter 1280/2560 - loss 0.15641733 - samples/sec: 10.42 - lr: 0.000003
2021-01-16 06:03:57,792 epoch 10 - iter 1536/2560 - loss 0.15979563 - samples/sec: 10.46 - lr: 0.000003
2021-01-16 06:05:37,942 epoch 10 - iter 1792/2560 - loss 0.15822496 - samples/sec: 10.23 - lr: 0.000003
2021-01-16 06:07:15,923 epoch 10 - iter 2048/2560 - loss 0.15759511 - samples/sec: 10.45 - lr: 0.000003
2021-01-16 06:08:53,939 epoch 10 - iter 2304/2560 - loss 0.15693087 - samples/sec: 10.45 - lr: 0.000003
2021-01-16 06:10:32,048 epoch 10 - iter 2560/2560 - loss 0.15801453 - samples/sec: 10.44 - lr: 0.000002
2021-01-16 06:10:32,051 ----------------------------------------------------------------------------------------------------
2021-01-16 06:10:32,051 EPOCH 10 done: loss 0.1580 - lr 0.0000025
2021-01-16 06:10:32,051 BAD EPOCHS (no improvement): 4
2021-01-16 06:10:32,054 ----------------------------------------------------------------------------------------------------
2021-01-16 06:12:10,483 epoch 11 - iter 256/2560 - loss 0.16742767 - samples/sec: 10.40 - lr: 0.000002
2021-01-16 06:13:48,782 epoch 11 - iter 512/2560 - loss 0.15327274 - samples/sec: 10.42 - lr: 0.000002
2021-01-16 06:15:26,970 epoch 11 - iter 768/2560 - loss 0.15209073 - samples/sec: 10.43 - lr: 0.000002
2021-01-16 06:17:05,366 epoch 11 - iter 1024/2560 - loss 0.14838890 - samples/sec: 10.41 - lr: 0.000002
2021-01-16 06:18:43,497 epoch 11 - iter 1280/2560 - loss 0.14857876 - samples/sec: 10.44 - lr: 0.000002
2021-01-16 06:20:21,564 epoch 11 - iter 1536/2560 - loss 0.14942513 - samples/sec: 10.44 - lr: 0.000002
2021-01-16 06:21:59,181 epoch 11 - iter 1792/2560 - loss 0.14977847 - samples/sec: 10.49 - lr: 0.000002
2021-01-16 06:23:37,984 epoch 11 - iter 2048/2560 - loss 0.15052564 - samples/sec: 10.37 - lr: 0.000002
2021-01-16 06:25:18,744 epoch 11 - iter 2304/2560 - loss 0.15348464 - samples/sec: 10.16 - lr: 0.000002
2021-01-16 06:26:56,801 epoch 11 - iter 2560/2560 - loss 0.15405217 - samples/sec: 10.44 - lr: 0.000002
2021-01-16 06:26:56,804 ----------------------------------------------------------------------------------------------------
2021-01-16 06:26:56,804 EPOCH 11 done: loss 0.1541 - lr 0.0000021
2021-01-16 06:26:56,804 BAD EPOCHS (no improvement): 4
2021-01-16 06:26:56,806 ----------------------------------------------------------------------------------------------------
2021-01-16 06:28:34,919 epoch 12 - iter 256/2560 - loss 0.14515525 - samples/sec: 10.44 - lr: 0.000002
2021-01-16 06:30:14,290 epoch 12 - iter 512/2560 - loss 0.16185121 - samples/sec: 10.31 - lr: 0.000002
2021-01-16 06:31:51,825 epoch 12 - iter 768/2560 - loss 0.15630178 - samples/sec: 10.50 - lr: 0.000002
2021-01-16 06:33:29,645 epoch 12 - iter 1024/2560 - loss 0.16061640 - samples/sec: 10.47 - lr: 0.000002
2021-01-16 06:35:07,390 epoch 12 - iter 1280/2560 - loss 0.16106939 - samples/sec: 10.48 - lr: 0.000002
2021-01-16 06:36:45,537 epoch 12 - iter 1536/2560 - loss 0.16553326 - samples/sec: 10.43 - lr: 0.000002
2021-01-16 06:38:23,976 epoch 12 - iter 1792/2560 - loss 0.16298360 - samples/sec: 10.40 - lr: 0.000002
2021-01-16 06:40:01,697 epoch 12 - iter 2048/2560 - loss 0.15791582 - samples/sec: 10.48 - lr: 0.000002
2021-01-16 06:41:40,081 epoch 12 - iter 2304/2560 - loss 0.15724189 - samples/sec: 10.41 - lr: 0.000002
2021-01-16 06:43:17,722 epoch 12 - iter 2560/2560 - loss 0.15517561 - samples/sec: 10.49 - lr: 0.000002
2021-01-16 06:43:17,724 ----------------------------------------------------------------------------------------------------
2021-01-16 06:43:17,724 EPOCH 12 done: loss 0.1552 - lr 0.0000017
2021-01-16 06:43:17,724 BAD EPOCHS (no improvement): 4
2021-01-16 06:43:17,727 ----------------------------------------------------------------------------------------------------
2021-01-16 06:44:55,687 epoch 13 - iter 256/2560 - loss 0.15713525 - samples/sec: 10.45 - lr: 0.000002
2021-01-16 06:46:36,001 epoch 13 - iter 512/2560 - loss 0.15100717 - samples/sec: 10.21 - lr: 0.000002
2021-01-16 06:48:13,819 epoch 13 - iter 768/2560 - loss 0.15847721 - samples/sec: 10.47 - lr: 0.000002
2021-01-16 06:49:52,306 epoch 13 - iter 1024/2560 - loss 0.15904259 - samples/sec: 10.40 - lr: 0.000002
2021-01-16 06:51:29,891 epoch 13 - iter 1280/2560 - loss 0.15989578 - samples/sec: 10.49 - lr: 0.000002
2021-01-16 06:53:08,047 epoch 13 - iter 1536/2560 - loss 0.15584846 - samples/sec: 10.43 - lr: 0.000002
2021-01-16 06:54:45,903 epoch 13 - iter 1792/2560 - loss 0.15456669 - samples/sec: 10.47 - lr: 0.000001
2021-01-16 06:56:23,958 epoch 13 - iter 2048/2560 - loss 0.15476196 - samples/sec: 10.44 - lr: 0.000001
2021-01-16 06:58:01,860 epoch 13 - iter 2304/2560 - loss 0.15554818 - samples/sec: 10.46 - lr: 0.000001
2021-01-16 06:59:39,510 epoch 13 - iter 2560/2560 - loss 0.15582554 - samples/sec: 10.49 - lr: 0.000001
2021-01-16 06:59:39,513 ----------------------------------------------------------------------------------------------------
2021-01-16 06:59:39,513 EPOCH 13 done: loss 0.1558 - lr 0.0000014
2021-01-16 06:59:39,513 BAD EPOCHS (no improvement): 4
2021-01-16 06:59:39,536 ----------------------------------------------------------------------------------------------------
2021-01-16 07:01:17,550 epoch 14 - iter 256/2560 - loss 0.14336771 - samples/sec: 10.45 - lr: 0.000001
2021-01-16 07:02:55,149 epoch 14 - iter 512/2560 - loss 0.13420979 - samples/sec: 10.49 - lr: 0.000001
2021-01-16 07:04:33,295 epoch 14 - iter 768/2560 - loss 0.14666678 - samples/sec: 10.43 - lr: 0.000001
2021-01-16 07:06:11,482 epoch 14 - iter 1024/2560 - loss 0.14107045 - samples/sec: 10.43 - lr: 0.000001
2021-01-16 07:07:50,423 epoch 14 - iter 1280/2560 - loss 0.14810884 - samples/sec: 10.35 - lr: 0.000001
2021-01-16 07:09:29,149 epoch 14 - iter 1536/2560 - loss 0.15039081 - samples/sec: 10.37 - lr: 0.000001
2021-01-16 07:11:08,549 epoch 14 - iter 1792/2560 - loss 0.15404881 - samples/sec: 10.30 - lr: 0.000001
2021-01-16 07:12:48,860 epoch 14 - iter 2048/2560 - loss 0.15398198 - samples/sec: 10.21 - lr: 0.000001
2021-01-16 07:14:26,993 epoch 14 - iter 2304/2560 - loss 0.15119867 - samples/sec: 10.44 - lr: 0.000001
2021-01-16 07:16:07,905 epoch 14 - iter 2560/2560 - loss 0.14988600 - samples/sec: 10.15 - lr: 0.000001
2021-01-16 07:16:07,907 ----------------------------------------------------------------------------------------------------
2021-01-16 07:16:07,907 EPOCH 14 done: loss 0.1499 - lr 0.0000010
2021-01-16 07:16:07,907 BAD EPOCHS (no improvement): 4
2021-01-16 07:16:07,910 ----------------------------------------------------------------------------------------------------
2021-01-16 07:17:47,163 epoch 15 - iter 256/2560 - loss 0.13211162 - samples/sec: 10.32 - lr: 0.000001
2021-01-16 07:19:26,428 epoch 15 - iter 512/2560 - loss 0.14312262 - samples/sec: 10.32 - lr: 0.000001
2021-01-16 07:21:04,402 epoch 15 - iter 768/2560 - loss 0.14991927 - samples/sec: 10.45 - lr: 0.000001
2021-01-16 07:22:42,083 epoch 15 - iter 1024/2560 - loss 0.15132502 - samples/sec: 10.48 - lr: 0.000001
2021-01-16 07:24:23,248 epoch 15 - iter 1280/2560 - loss 0.15012698 - samples/sec: 10.12 - lr: 0.000001
2021-01-16 07:26:02,510 epoch 15 - iter 1536/2560 - loss 0.15443282 - samples/sec: 10.32 - lr: 0.000001
2021-01-16 07:27:41,227 epoch 15 - iter 1792/2560 - loss 0.15337861 - samples/sec: 10.37 - lr: 0.000001
2021-01-16 07:29:19,916 epoch 15 - iter 2048/2560 - loss 0.15342457 - samples/sec: 10.38 - lr: 0.000001
2021-01-16 07:30:58,353 epoch 15 - iter 2304/2560 - loss 0.15126241 - samples/sec: 10.40 - lr: 0.000001
2021-01-16 07:32:36,692 epoch 15 - iter 2560/2560 - loss 0.14841692 - samples/sec: 10.41 - lr: 0.000001
2021-01-16 07:32:36,694 ----------------------------------------------------------------------------------------------------
2021-01-16 07:32:36,694 EPOCH 15 done: loss 0.1484 - lr 0.0000007
2021-01-16 07:32:36,694 BAD EPOCHS (no improvement): 4
2021-01-16 07:32:36,700 ----------------------------------------------------------------------------------------------------
2021-01-16 07:34:15,608 epoch 16 - iter 256/2560 - loss 0.14154861 - samples/sec: 10.35 - lr: 0.000001
2021-01-16 07:35:54,182 epoch 16 - iter 512/2560 - loss 0.15666068 - samples/sec: 10.39 - lr: 0.000001
2021-01-16 07:37:32,436 epoch 16 - iter 768/2560 - loss 0.14965853 - samples/sec: 10.42 - lr: 0.000001
2021-01-16 07:39:11,322 epoch 16 - iter 1024/2560 - loss 0.14517837 - samples/sec: 10.36 - lr: 0.000001
2021-01-16 07:40:50,070 epoch 16 - iter 1280/2560 - loss 0.15012946 - samples/sec: 10.37 - lr: 0.000001
2021-01-16 07:42:28,901 epoch 16 - iter 1536/2560 - loss 0.14944365 - samples/sec: 10.36 - lr: 0.000001
2021-01-16 07:44:07,511 epoch 16 - iter 1792/2560 - loss 0.15203691 - samples/sec: 10.39 - lr: 0.000001
2021-01-16 07:45:46,097 epoch 16 - iter 2048/2560 - loss 0.15361748 - samples/sec: 10.39 - lr: 0.000001
2021-01-16 07:47:24,743 epoch 16 - iter 2304/2560 - loss 0.15600239 - samples/sec: 10.38 - lr: 0.000001
2021-01-16 07:49:05,943 epoch 16 - iter 2560/2560 - loss 0.15282003 - samples/sec: 10.12 - lr: 0.000000
2021-01-16 07:49:05,945 ----------------------------------------------------------------------------------------------------
2021-01-16 07:49:05,945 EPOCH 16 done: loss 0.1528 - lr 0.0000005
2021-01-16 07:49:05,945 BAD EPOCHS (no improvement): 4
2021-01-16 07:49:05,948 ----------------------------------------------------------------------------------------------------
2021-01-16 07:50:44,838 epoch 17 - iter 256/2560 - loss 0.16498748 - samples/sec: 10.36 - lr: 0.000000
2021-01-16 07:52:23,007 epoch 17 - iter 512/2560 - loss 0.16360209 - samples/sec: 10.43 - lr: 0.000000
2021-01-16 07:54:00,994 epoch 17 - iter 768/2560 - loss 0.15339211 - samples/sec: 10.45 - lr: 0.000000
2021-01-16 07:55:39,191 epoch 17 - iter 1024/2560 - loss 0.15505899 - samples/sec: 10.43 - lr: 0.000000
2021-01-16 07:57:19,956 epoch 17 - iter 1280/2560 - loss 0.15433689 - samples/sec: 10.16 - lr: 0.000000
2021-01-16 07:58:58,357 epoch 17 - iter 1536/2560 - loss 0.15255959 - samples/sec: 10.41 - lr: 0.000000
2021-01-16 08:00:36,819 epoch 17 - iter 1792/2560 - loss 0.15399288 - samples/sec: 10.40 - lr: 0.000000
2021-01-16 08:02:15,472 epoch 17 - iter 2048/2560 - loss 0.15148049 - samples/sec: 10.38 - lr: 0.000000
2021-01-16 08:03:54,072 epoch 17 - iter 2304/2560 - loss 0.15382739 - samples/sec: 10.39 - lr: 0.000000
2021-01-16 08:05:31,830 epoch 17 - iter 2560/2560 - loss 0.15712540 - samples/sec: 10.48 - lr: 0.000000
2021-01-16 08:05:31,833 ----------------------------------------------------------------------------------------------------
2021-01-16 08:05:31,833 EPOCH 17 done: loss 0.1571 - lr 0.0000003
2021-01-16 08:05:31,833 BAD EPOCHS (no improvement): 4
2021-01-16 08:05:31,841 ----------------------------------------------------------------------------------------------------
2021-01-16 08:07:10,239 epoch 18 - iter 256/2560 - loss 0.15978983 - samples/sec: 10.41 - lr: 0.000000
2021-01-16 08:08:48,106 epoch 18 - iter 512/2560 - loss 0.14347639 - samples/sec: 10.46 - lr: 0.000000
2021-01-16 08:10:26,495 epoch 18 - iter 768/2560 - loss 0.15206254 - samples/sec: 10.41 - lr: 0.000000
2021-01-16 08:12:04,438 epoch 18 - iter 1024/2560 - loss 0.16796272 - samples/sec: 10.46 - lr: 0.000000
2021-01-16 08:13:42,204 epoch 18 - iter 1280/2560 - loss 0.16531154 - samples/sec: 10.48 - lr: 0.000000
2021-01-16 08:15:23,133 epoch 18 - iter 1536/2560 - loss 0.16233384 - samples/sec: 10.15 - lr: 0.000000
2021-01-16 08:17:01,293 epoch 18 - iter 1792/2560 - loss 0.16011966 - samples/sec: 10.43 - lr: 0.000000
2021-01-16 08:18:39,512 epoch 18 - iter 2048/2560 - loss 0.16087553 - samples/sec: 10.43 - lr: 0.000000
2021-01-16 08:20:17,092 epoch 18 - iter 2304/2560 - loss 0.16158800 - samples/sec: 10.50 - lr: 0.000000
2021-01-16 08:21:54,438 epoch 18 - iter 2560/2560 - loss 0.16291885 - samples/sec: 10.52 - lr: 0.000000
2021-01-16 08:21:54,441 ----------------------------------------------------------------------------------------------------
2021-01-16 08:21:54,441 EPOCH 18 done: loss 0.1629 - lr 0.0000001
2021-01-16 08:21:54,441 BAD EPOCHS (no improvement): 4
2021-01-16 08:21:54,456 ----------------------------------------------------------------------------------------------------
2021-01-16 08:23:31,809 epoch 19 - iter 256/2560 - loss 0.13830293 - samples/sec: 10.52 - lr: 0.000000
2021-01-16 08:25:09,222 epoch 19 - iter 512/2560 - loss 0.14792782 - samples/sec: 10.51 - lr: 0.000000
2021-01-16 08:26:47,079 epoch 19 - iter 768/2560 - loss 0.13707639 - samples/sec: 10.47 - lr: 0.000000
2021-01-16 08:28:27,701 epoch 19 - iter 1024/2560 - loss 0.13387744 - samples/sec: 10.18 - lr: 0.000000
2021-01-16 08:30:05,328 epoch 19 - iter 1280/2560 - loss 0.13241945 - samples/sec: 10.49 - lr: 0.000000
2021-01-16 08:31:43,732 epoch 19 - iter 1536/2560 - loss 0.13879341 - samples/sec: 10.41 - lr: 0.000000
2021-01-16 08:33:21,817 epoch 19 - iter 1792/2560 - loss 0.13955545 - samples/sec: 10.44 - lr: 0.000000
2021-01-16 08:34:59,377 epoch 19 - iter 2048/2560 - loss 0.13983331 - samples/sec: 10.50 - lr: 0.000000
2021-01-16 08:36:36,814 epoch 19 - iter 2304/2560 - loss 0.14005413 - samples/sec: 10.51 - lr: 0.000000
2021-01-16 08:38:14,963 epoch 19 - iter 2560/2560 - loss 0.14057681 - samples/sec: 10.43 - lr: 0.000000
2021-01-16 08:38:14,965 ----------------------------------------------------------------------------------------------------
2021-01-16 08:38:14,965 EPOCH 19 done: loss 0.1406 - lr 0.0000000
2021-01-16 08:38:14,965 BAD EPOCHS (no improvement): 4
2021-01-16 08:38:14,968 ----------------------------------------------------------------------------------------------------
2021-01-16 08:39:54,826 epoch 20 - iter 256/2560 - loss 0.14269958 - samples/sec: 10.26 - lr: 0.000000
2021-01-16 08:41:32,343 epoch 20 - iter 512/2560 - loss 0.13295984 - samples/sec: 10.50 - lr: 0.000000
2021-01-16 08:43:09,612 epoch 20 - iter 768/2560 - loss 0.13303004 - samples/sec: 10.53 - lr: 0.000000
2021-01-16 08:44:46,898 epoch 20 - iter 1024/2560 - loss 0.13511050 - samples/sec: 10.53 - lr: 0.000000
2021-01-16 08:46:24,453 epoch 20 - iter 1280/2560 - loss 0.14147167 - samples/sec: 10.50 - lr: 0.000000
2021-01-16 08:48:01,998 epoch 20 - iter 1536/2560 - loss 0.14640782 - samples/sec: 10.50 - lr: 0.000000
2021-01-16 08:49:39,864 epoch 20 - iter 1792/2560 - loss 0.14698716 - samples/sec: 10.46 - lr: 0.000000
2021-01-16 08:51:17,251 epoch 20 - iter 2048/2560 - loss 0.14558654 - samples/sec: 10.52 - lr: 0.000000
2021-01-16 08:52:55,347 epoch 20 - iter 2304/2560 - loss 0.14717600 - samples/sec: 10.44 - lr: 0.000000
2021-01-16 08:54:33,232 epoch 20 - iter 2560/2560 - loss 0.14611906 - samples/sec: 10.46 - lr: 0.000000
2021-01-16 08:54:33,234 ----------------------------------------------------------------------------------------------------
2021-01-16 08:54:33,234 EPOCH 20 done: loss 0.1461 - lr 0.0000000
2021-01-16 08:54:33,234 BAD EPOCHS (no improvement): 4
2021-01-16 08:55:12,409 ----------------------------------------------------------------------------------------------------
2021-01-16 08:55:12,409 Testing using best model ...
2021-01-16 08:56:13,946 0.9021	0.9087	0.9054
2021-01-16 08:56:13,946 
Results:
- F1-score (micro) 0.9054
- F1-score (macro) 0.8961

By class:
LOC        tp: 942 - fp: 87 - fn: 142 - precision: 0.9155 - recall: 0.8690 - f1-score: 0.8916
MISC       tp: 272 - fp: 57 - fn: 68 - precision: 0.8267 - recall: 0.8000 - f1-score: 0.8132
ORG        tp: 1292 - fp: 188 - fn: 108 - precision: 0.8730 - recall: 0.9229 - f1-score: 0.8972
PER        tp: 728 - fp: 19 - fn: 7 - precision: 0.9746 - recall: 0.9905 - f1-score: 0.9825
2021-01-16 08:56:13,946 ----------------------------------------------------------------------------------------------------