initial commit
Browse files- README.md +158 -0
- loss.tsv +21 -0
- pytorch_model.bin +3 -0
- training.log +892 -0
README.md
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- flair
|
4 |
+
- token-classification
|
5 |
+
- sequence-tagger-model
|
6 |
+
language: es
|
7 |
+
datasets:
|
8 |
+
- conll2003
|
9 |
+
inference: false
|
10 |
+
---
|
11 |
+
|
12 |
+
## Spanish NER in Flair (large model)
|
13 |
+
|
14 |
+
This is the large 4-class NER model for Spanish that ships with [Flair](https://github.com/flairNLP/flair/).
|
15 |
+
|
16 |
+
F1-Score: **92,31** (CoNLL-03 German revised)
|
17 |
+
|
18 |
+
**! This model only works with Flair version 0.8 (will be released in the next few days) !**
|
19 |
+
|
20 |
+
Predicts 4 tags:
|
21 |
+
|
22 |
+
| **tag** | **meaning** |
|
23 |
+
|---------------------------------|-----------|
|
24 |
+
| PER | person name |
|
25 |
+
| LOC | location name |
|
26 |
+
| ORG | organization name |
|
27 |
+
| MISC | other name |
|
28 |
+
|
29 |
+
Based on [document-level XLM-R embeddings](https://www.aclweb.org/anthology/C18-1139/).
|
30 |
+
|
31 |
+
---
|
32 |
+
|
33 |
+
### Demo: How to use in Flair
|
34 |
+
|
35 |
+
Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
|
36 |
+
|
37 |
+
```python
|
38 |
+
from flair.data import Sentence
|
39 |
+
from flair.models import SequenceTagger
|
40 |
+
|
41 |
+
# load tagger
|
42 |
+
tagger = SequenceTagger.load("flair/ner-spanish-large")
|
43 |
+
|
44 |
+
# make example sentence
|
45 |
+
sentence = Sentence("George Washington ging nach Washington")
|
46 |
+
|
47 |
+
# predict NER tags
|
48 |
+
tagger.predict(sentence)
|
49 |
+
|
50 |
+
# print sentence
|
51 |
+
print(sentence)
|
52 |
+
|
53 |
+
# print predicted NER spans
|
54 |
+
print('The following NER tags are found:')
|
55 |
+
# iterate over entities and print
|
56 |
+
for entity in sentence.get_spans('ner'):
|
57 |
+
print(entity)
|
58 |
+
|
59 |
+
```
|
60 |
+
|
61 |
+
This yields the following output:
|
62 |
+
```
|
63 |
+
Span [1,2]: "George Washington" [− Labels: PER (1.0)]
|
64 |
+
Span [5]: "Washington" [− Labels: LOC (1.0)]
|
65 |
+
```
|
66 |
+
|
67 |
+
So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington ging nach Washington*".
|
68 |
+
|
69 |
+
|
70 |
+
---
|
71 |
+
|
72 |
+
### Training: Script to train this model
|
73 |
+
|
74 |
+
The following Flair script was used to train this model:
|
75 |
+
|
76 |
+
```python
|
77 |
+
import torch
|
78 |
+
|
79 |
+
# 1. get the corpus
|
80 |
+
from flair.datasets import CONLL_03_SPANISH
|
81 |
+
|
82 |
+
corpus = CONLL_03_SPANISH()
|
83 |
+
|
84 |
+
# 2. what tag do we want to predict?
|
85 |
+
tag_type = 'ner'
|
86 |
+
|
87 |
+
# 3. make the tag dictionary from the corpus
|
88 |
+
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
|
89 |
+
|
90 |
+
# 4. initialize fine-tuneable transformer embeddings WITH document context
|
91 |
+
from flair.embeddings import TransformerWordEmbeddings
|
92 |
+
|
93 |
+
embeddings = TransformerWordEmbeddings(
|
94 |
+
model='xlm-roberta-large',
|
95 |
+
layers="-1",
|
96 |
+
subtoken_pooling="first",
|
97 |
+
fine_tune=True,
|
98 |
+
use_context=True,
|
99 |
+
)
|
100 |
+
|
101 |
+
# 5. initialize bare-bones sequence tagger (no CRF, no RNN, no reprojection)
|
102 |
+
from flair.models import SequenceTagger
|
103 |
+
|
104 |
+
tagger = SequenceTagger(
|
105 |
+
hidden_size=256,
|
106 |
+
embeddings=embeddings,
|
107 |
+
tag_dictionary=tag_dictionary,
|
108 |
+
tag_type='ner',
|
109 |
+
use_crf=False,
|
110 |
+
use_rnn=False,
|
111 |
+
reproject_embeddings=False,
|
112 |
+
)
|
113 |
+
|
114 |
+
# 6. initialize trainer with AdamW optimizer
|
115 |
+
from flair.trainers import ModelTrainer
|
116 |
+
|
117 |
+
trainer = ModelTrainer(tagger, corpus, optimizer=torch.optim.AdamW)
|
118 |
+
|
119 |
+
# 7. run training with XLM parameters (20 epochs, small LR)
|
120 |
+
from torch.optim.lr_scheduler import OneCycleLR
|
121 |
+
|
122 |
+
trainer.train('resources/taggers/ner-spanish-large',
|
123 |
+
learning_rate=5.0e-6,
|
124 |
+
mini_batch_size=4,
|
125 |
+
mini_batch_chunk_size=1,
|
126 |
+
max_epochs=20,
|
127 |
+
scheduler=OneCycleLR,
|
128 |
+
embeddings_storage_mode='none',
|
129 |
+
weight_decay=0.,
|
130 |
+
)
|
131 |
+
|
132 |
+
)
|
133 |
+
```
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
---
|
138 |
+
|
139 |
+
### Cite
|
140 |
+
|
141 |
+
Please cite the following paper when using this model.
|
142 |
+
|
143 |
+
```
|
144 |
+
@misc{schweter2020flert,
|
145 |
+
title={FLERT: Document-Level Features for Named Entity Recognition},
|
146 |
+
author={Stefan Schweter and Alan Akbik},
|
147 |
+
year={2020},
|
148 |
+
eprint={2011.06993},
|
149 |
+
archivePrefix={arXiv},
|
150 |
+
primaryClass={cs.CL}
|
151 |
+
}
|
152 |
+
```
|
153 |
+
|
154 |
+
---
|
155 |
+
|
156 |
+
### Issues?
|
157 |
+
|
158 |
+
The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
|
loss.tsv
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS
|
2 |
+
1 03:42:54 4 0.0000 0.3266703642570718
|
3 |
+
2 03:59:31 4 0.0000 0.2195460225134484
|
4 |
+
3 04:16:13 4 0.0000 0.1933198845743666
|
5 |
+
4 04:32:40 4 0.0000 0.1872510862514337
|
6 |
+
5 04:48:56 4 0.0000 0.17857406046914318
|
7 |
+
6 05:05:14 4 0.0000 0.16921875621090116
|
8 |
+
7 05:21:27 4 0.0000 0.1666596209211079
|
9 |
+
8 05:37:43 4 0.0000 0.16070350912475692
|
10 |
+
9 05:54:08 4 0.0000 0.1624060529415902
|
11 |
+
10 06:10:32 4 0.0000 0.1580145349272955
|
12 |
+
11 06:26:56 4 0.0000 0.1540521664003986
|
13 |
+
12 06:43:17 4 0.0000 0.15517560774918843
|
14 |
+
13 06:59:39 4 0.0000 0.1558255414095817
|
15 |
+
14 07:16:07 4 0.0000 0.14988600317802847
|
16 |
+
15 07:32:36 4 0.0000 0.14841691814629973
|
17 |
+
16 07:49:05 4 0.0000 0.15282003354897164
|
18 |
+
17 08:05:31 4 0.0000 0.15712539515756105
|
19 |
+
18 08:21:54 4 0.0000 0.16291884726042624
|
20 |
+
19 08:38:14 4 0.0000 0.14057681102068115
|
21 |
+
20 08:54:33 4 0.0000 0.14611905722473392
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b1da7ebe3bdcc58c91eb9916f7d881791ac2659307f0c383c325361382f2f42
|
3 |
+
size 2239866697
|
training.log
ADDED
@@ -0,0 +1,892 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2021-01-16 03:26:26,142 ----------------------------------------------------------------------------------------------------
|
2 |
+
2021-01-16 03:26:26,146 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): XLMRobertaModel(
|
5 |
+
(embeddings): RobertaEmbeddings(
|
6 |
+
(word_embeddings): Embedding(250002, 1024, padding_idx=1)
|
7 |
+
(position_embeddings): Embedding(514, 1024, padding_idx=1)
|
8 |
+
(token_type_embeddings): Embedding(1, 1024)
|
9 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): RobertaEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): RobertaLayer(
|
15 |
+
(attention): RobertaAttention(
|
16 |
+
(self): RobertaSelfAttention(
|
17 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
18 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
19 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): RobertaSelfOutput(
|
23 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): RobertaIntermediate(
|
29 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
30 |
+
)
|
31 |
+
(output): RobertaOutput(
|
32 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
33 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
34 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
35 |
+
)
|
36 |
+
)
|
37 |
+
(1): RobertaLayer(
|
38 |
+
(attention): RobertaAttention(
|
39 |
+
(self): RobertaSelfAttention(
|
40 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
41 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
42 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
43 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
44 |
+
)
|
45 |
+
(output): RobertaSelfOutput(
|
46 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
47 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
48 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
49 |
+
)
|
50 |
+
)
|
51 |
+
(intermediate): RobertaIntermediate(
|
52 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
53 |
+
)
|
54 |
+
(output): RobertaOutput(
|
55 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
56 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
57 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
58 |
+
)
|
59 |
+
)
|
60 |
+
(2): RobertaLayer(
|
61 |
+
(attention): RobertaAttention(
|
62 |
+
(self): RobertaSelfAttention(
|
63 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
64 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
65 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
66 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
67 |
+
)
|
68 |
+
(output): RobertaSelfOutput(
|
69 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
70 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
71 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
72 |
+
)
|
73 |
+
)
|
74 |
+
(intermediate): RobertaIntermediate(
|
75 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
76 |
+
)
|
77 |
+
(output): RobertaOutput(
|
78 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
79 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
80 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
81 |
+
)
|
82 |
+
)
|
83 |
+
(3): RobertaLayer(
|
84 |
+
(attention): RobertaAttention(
|
85 |
+
(self): RobertaSelfAttention(
|
86 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
87 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
88 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
89 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
90 |
+
)
|
91 |
+
(output): RobertaSelfOutput(
|
92 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
93 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
94 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
95 |
+
)
|
96 |
+
)
|
97 |
+
(intermediate): RobertaIntermediate(
|
98 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
99 |
+
)
|
100 |
+
(output): RobertaOutput(
|
101 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
102 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
103 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
104 |
+
)
|
105 |
+
)
|
106 |
+
(4): RobertaLayer(
|
107 |
+
(attention): RobertaAttention(
|
108 |
+
(self): RobertaSelfAttention(
|
109 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
110 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
111 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
112 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
113 |
+
)
|
114 |
+
(output): RobertaSelfOutput(
|
115 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
116 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
117 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
118 |
+
)
|
119 |
+
)
|
120 |
+
(intermediate): RobertaIntermediate(
|
121 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
122 |
+
)
|
123 |
+
(output): RobertaOutput(
|
124 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
125 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
126 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
127 |
+
)
|
128 |
+
)
|
129 |
+
(5): RobertaLayer(
|
130 |
+
(attention): RobertaAttention(
|
131 |
+
(self): RobertaSelfAttention(
|
132 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
133 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
134 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
135 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
136 |
+
)
|
137 |
+
(output): RobertaSelfOutput(
|
138 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
139 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
)
|
143 |
+
(intermediate): RobertaIntermediate(
|
144 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
145 |
+
)
|
146 |
+
(output): RobertaOutput(
|
147 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
148 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
149 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
150 |
+
)
|
151 |
+
)
|
152 |
+
(6): RobertaLayer(
|
153 |
+
(attention): RobertaAttention(
|
154 |
+
(self): RobertaSelfAttention(
|
155 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
156 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
157 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
158 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
159 |
+
)
|
160 |
+
(output): RobertaSelfOutput(
|
161 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
162 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
163 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
164 |
+
)
|
165 |
+
)
|
166 |
+
(intermediate): RobertaIntermediate(
|
167 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
168 |
+
)
|
169 |
+
(output): RobertaOutput(
|
170 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
171 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
172 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
173 |
+
)
|
174 |
+
)
|
175 |
+
(7): RobertaLayer(
|
176 |
+
(attention): RobertaAttention(
|
177 |
+
(self): RobertaSelfAttention(
|
178 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
179 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
180 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
181 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
182 |
+
)
|
183 |
+
(output): RobertaSelfOutput(
|
184 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
185 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
186 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
187 |
+
)
|
188 |
+
)
|
189 |
+
(intermediate): RobertaIntermediate(
|
190 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
191 |
+
)
|
192 |
+
(output): RobertaOutput(
|
193 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
194 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
195 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
196 |
+
)
|
197 |
+
)
|
198 |
+
(8): RobertaLayer(
|
199 |
+
(attention): RobertaAttention(
|
200 |
+
(self): RobertaSelfAttention(
|
201 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
202 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
203 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
204 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
205 |
+
)
|
206 |
+
(output): RobertaSelfOutput(
|
207 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
208 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
209 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
210 |
+
)
|
211 |
+
)
|
212 |
+
(intermediate): RobertaIntermediate(
|
213 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
214 |
+
)
|
215 |
+
(output): RobertaOutput(
|
216 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
217 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
218 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
219 |
+
)
|
220 |
+
)
|
221 |
+
(9): RobertaLayer(
|
222 |
+
(attention): RobertaAttention(
|
223 |
+
(self): RobertaSelfAttention(
|
224 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
225 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
226 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
(output): RobertaSelfOutput(
|
230 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
231 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
232 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
233 |
+
)
|
234 |
+
)
|
235 |
+
(intermediate): RobertaIntermediate(
|
236 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
237 |
+
)
|
238 |
+
(output): RobertaOutput(
|
239 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(10): RobertaLayer(
|
245 |
+
(attention): RobertaAttention(
|
246 |
+
(self): RobertaSelfAttention(
|
247 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
248 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
249 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
250 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
251 |
+
)
|
252 |
+
(output): RobertaSelfOutput(
|
253 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
254 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
255 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
256 |
+
)
|
257 |
+
)
|
258 |
+
(intermediate): RobertaIntermediate(
|
259 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
260 |
+
)
|
261 |
+
(output): RobertaOutput(
|
262 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
263 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
264 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
265 |
+
)
|
266 |
+
)
|
267 |
+
(11): RobertaLayer(
|
268 |
+
(attention): RobertaAttention(
|
269 |
+
(self): RobertaSelfAttention(
|
270 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
271 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
272 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
273 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
274 |
+
)
|
275 |
+
(output): RobertaSelfOutput(
|
276 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
277 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
278 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
279 |
+
)
|
280 |
+
)
|
281 |
+
(intermediate): RobertaIntermediate(
|
282 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
283 |
+
)
|
284 |
+
(output): RobertaOutput(
|
285 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
286 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
287 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
288 |
+
)
|
289 |
+
)
|
290 |
+
(12): RobertaLayer(
|
291 |
+
(attention): RobertaAttention(
|
292 |
+
(self): RobertaSelfAttention(
|
293 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
294 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
295 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
296 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
297 |
+
)
|
298 |
+
(output): RobertaSelfOutput(
|
299 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
300 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
301 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(intermediate): RobertaIntermediate(
|
305 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
306 |
+
)
|
307 |
+
(output): RobertaOutput(
|
308 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
309 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
310 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
311 |
+
)
|
312 |
+
)
|
313 |
+
(13): RobertaLayer(
|
314 |
+
(attention): RobertaAttention(
|
315 |
+
(self): RobertaSelfAttention(
|
316 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
317 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
318 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
319 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
320 |
+
)
|
321 |
+
(output): RobertaSelfOutput(
|
322 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
323 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
324 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
325 |
+
)
|
326 |
+
)
|
327 |
+
(intermediate): RobertaIntermediate(
|
328 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
329 |
+
)
|
330 |
+
(output): RobertaOutput(
|
331 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
332 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
333 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
334 |
+
)
|
335 |
+
)
|
336 |
+
(14): RobertaLayer(
|
337 |
+
(attention): RobertaAttention(
|
338 |
+
(self): RobertaSelfAttention(
|
339 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
340 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
341 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
342 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
343 |
+
)
|
344 |
+
(output): RobertaSelfOutput(
|
345 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
346 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
347 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
348 |
+
)
|
349 |
+
)
|
350 |
+
(intermediate): RobertaIntermediate(
|
351 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
352 |
+
)
|
353 |
+
(output): RobertaOutput(
|
354 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
355 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
356 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
357 |
+
)
|
358 |
+
)
|
359 |
+
(15): RobertaLayer(
|
360 |
+
(attention): RobertaAttention(
|
361 |
+
(self): RobertaSelfAttention(
|
362 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
363 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
364 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
365 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
366 |
+
)
|
367 |
+
(output): RobertaSelfOutput(
|
368 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
369 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
370 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
371 |
+
)
|
372 |
+
)
|
373 |
+
(intermediate): RobertaIntermediate(
|
374 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
375 |
+
)
|
376 |
+
(output): RobertaOutput(
|
377 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
378 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
379 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
380 |
+
)
|
381 |
+
)
|
382 |
+
(16): RobertaLayer(
|
383 |
+
(attention): RobertaAttention(
|
384 |
+
(self): RobertaSelfAttention(
|
385 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
386 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
387 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
388 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
389 |
+
)
|
390 |
+
(output): RobertaSelfOutput(
|
391 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
392 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
393 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
394 |
+
)
|
395 |
+
)
|
396 |
+
(intermediate): RobertaIntermediate(
|
397 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
398 |
+
)
|
399 |
+
(output): RobertaOutput(
|
400 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
401 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
402 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
403 |
+
)
|
404 |
+
)
|
405 |
+
(17): RobertaLayer(
|
406 |
+
(attention): RobertaAttention(
|
407 |
+
(self): RobertaSelfAttention(
|
408 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
409 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
410 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
411 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
412 |
+
)
|
413 |
+
(output): RobertaSelfOutput(
|
414 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
415 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
416 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
417 |
+
)
|
418 |
+
)
|
419 |
+
(intermediate): RobertaIntermediate(
|
420 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
421 |
+
)
|
422 |
+
(output): RobertaOutput(
|
423 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
424 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
425 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
426 |
+
)
|
427 |
+
)
|
428 |
+
(18): RobertaLayer(
|
429 |
+
(attention): RobertaAttention(
|
430 |
+
(self): RobertaSelfAttention(
|
431 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
432 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
433 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
434 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
435 |
+
)
|
436 |
+
(output): RobertaSelfOutput(
|
437 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
438 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
439 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
440 |
+
)
|
441 |
+
)
|
442 |
+
(intermediate): RobertaIntermediate(
|
443 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
444 |
+
)
|
445 |
+
(output): RobertaOutput(
|
446 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
447 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
448 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
449 |
+
)
|
450 |
+
)
|
451 |
+
(19): RobertaLayer(
|
452 |
+
(attention): RobertaAttention(
|
453 |
+
(self): RobertaSelfAttention(
|
454 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
455 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
456 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
457 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
458 |
+
)
|
459 |
+
(output): RobertaSelfOutput(
|
460 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
461 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
462 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
463 |
+
)
|
464 |
+
)
|
465 |
+
(intermediate): RobertaIntermediate(
|
466 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
467 |
+
)
|
468 |
+
(output): RobertaOutput(
|
469 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
470 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
471 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
472 |
+
)
|
473 |
+
)
|
474 |
+
(20): RobertaLayer(
|
475 |
+
(attention): RobertaAttention(
|
476 |
+
(self): RobertaSelfAttention(
|
477 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
478 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
479 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
480 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
481 |
+
)
|
482 |
+
(output): RobertaSelfOutput(
|
483 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
484 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
485 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
486 |
+
)
|
487 |
+
)
|
488 |
+
(intermediate): RobertaIntermediate(
|
489 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
490 |
+
)
|
491 |
+
(output): RobertaOutput(
|
492 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
493 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
494 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
495 |
+
)
|
496 |
+
)
|
497 |
+
(21): RobertaLayer(
|
498 |
+
(attention): RobertaAttention(
|
499 |
+
(self): RobertaSelfAttention(
|
500 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
501 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
502 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
503 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
504 |
+
)
|
505 |
+
(output): RobertaSelfOutput(
|
506 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
507 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
508 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
509 |
+
)
|
510 |
+
)
|
511 |
+
(intermediate): RobertaIntermediate(
|
512 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
513 |
+
)
|
514 |
+
(output): RobertaOutput(
|
515 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
516 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
517 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
518 |
+
)
|
519 |
+
)
|
520 |
+
(22): RobertaLayer(
|
521 |
+
(attention): RobertaAttention(
|
522 |
+
(self): RobertaSelfAttention(
|
523 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
524 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
525 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
526 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
527 |
+
)
|
528 |
+
(output): RobertaSelfOutput(
|
529 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
530 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
531 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
532 |
+
)
|
533 |
+
)
|
534 |
+
(intermediate): RobertaIntermediate(
|
535 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
536 |
+
)
|
537 |
+
(output): RobertaOutput(
|
538 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
539 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
540 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
541 |
+
)
|
542 |
+
)
|
543 |
+
(23): RobertaLayer(
|
544 |
+
(attention): RobertaAttention(
|
545 |
+
(self): RobertaSelfAttention(
|
546 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
547 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
548 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
549 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
550 |
+
)
|
551 |
+
(output): RobertaSelfOutput(
|
552 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
553 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
554 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
555 |
+
)
|
556 |
+
)
|
557 |
+
(intermediate): RobertaIntermediate(
|
558 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
559 |
+
)
|
560 |
+
(output): RobertaOutput(
|
561 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
562 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
563 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
564 |
+
)
|
565 |
+
)
|
566 |
+
)
|
567 |
+
)
|
568 |
+
(pooler): RobertaPooler(
|
569 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
570 |
+
(activation): Tanh()
|
571 |
+
)
|
572 |
+
)
|
573 |
+
)
|
574 |
+
(word_dropout): WordDropout(p=0.05)
|
575 |
+
(locked_dropout): LockedDropout(p=0.5)
|
576 |
+
(linear): Linear(in_features=1024, out_features=20, bias=True)
|
577 |
+
(beta): 1.0
|
578 |
+
(weights): None
|
579 |
+
(weight_tensor) None
|
580 |
+
)"
|
581 |
+
2021-01-16 03:26:26,148 ----------------------------------------------------------------------------------------------------
|
582 |
+
2021-01-16 03:26:26,148 Corpus: "Corpus: 8323 train + 1915 dev + 1517 test sentences"
|
583 |
+
2021-01-16 03:26:26,148 ----------------------------------------------------------------------------------------------------
|
584 |
+
2021-01-16 03:26:26,148 Parameters:
|
585 |
+
2021-01-16 03:26:26,148 - learning_rate: "5e-06"
|
586 |
+
2021-01-16 03:26:26,148 - mini_batch_size: "4"
|
587 |
+
2021-01-16 03:26:26,148 - patience: "3"
|
588 |
+
2021-01-16 03:26:26,148 - anneal_factor: "0.5"
|
589 |
+
2021-01-16 03:26:26,148 - max_epochs: "20"
|
590 |
+
2021-01-16 03:26:26,148 - shuffle: "True"
|
591 |
+
2021-01-16 03:26:26,148 - train_with_dev: "True"
|
592 |
+
2021-01-16 03:26:26,148 - batch_growth_annealing: "False"
|
593 |
+
2021-01-16 03:26:26,149 ----------------------------------------------------------------------------------------------------
|
594 |
+
2021-01-16 03:26:26,149 Model training base path: "resources/contextdrop/flert-es-ft+dev-xlm-roberta-large-context+drop-64-True-258"
|
595 |
+
2021-01-16 03:26:26,149 ----------------------------------------------------------------------------------------------------
|
596 |
+
2021-01-16 03:26:26,149 Device: cuda:3
|
597 |
+
2021-01-16 03:26:26,149 ----------------------------------------------------------------------------------------------------
|
598 |
+
2021-01-16 03:26:26,149 Embeddings storage mode: none
|
599 |
+
2021-01-16 03:26:26,161 ----------------------------------------------------------------------------------------------------
|
600 |
+
2021-01-16 03:28:04,650 epoch 1 - iter 256/2560 - loss 0.87027155 - samples/sec: 10.40 - lr: 0.000005
|
601 |
+
2021-01-16 03:29:42,988 epoch 1 - iter 512/2560 - loss 0.59530026 - samples/sec: 10.41 - lr: 0.000005
|
602 |
+
2021-01-16 03:31:21,817 epoch 1 - iter 768/2560 - loss 0.52507711 - samples/sec: 10.36 - lr: 0.000005
|
603 |
+
2021-01-16 03:33:00,647 epoch 1 - iter 1024/2560 - loss 0.45703199 - samples/sec: 10.36 - lr: 0.000005
|
604 |
+
2021-01-16 03:34:42,020 epoch 1 - iter 1280/2560 - loss 0.41694313 - samples/sec: 10.10 - lr: 0.000005
|
605 |
+
2021-01-16 03:36:21,509 epoch 1 - iter 1536/2560 - loss 0.38192728 - samples/sec: 10.29 - lr: 0.000005
|
606 |
+
2021-01-16 03:38:00,214 epoch 1 - iter 1792/2560 - loss 0.36367874 - samples/sec: 10.38 - lr: 0.000005
|
607 |
+
2021-01-16 03:39:38,871 epoch 1 - iter 2048/2560 - loss 0.34546215 - samples/sec: 10.38 - lr: 0.000005
|
608 |
+
2021-01-16 03:41:16,409 epoch 1 - iter 2304/2560 - loss 0.33346538 - samples/sec: 10.50 - lr: 0.000005
|
609 |
+
2021-01-16 03:42:54,136 epoch 1 - iter 2560/2560 - loss 0.32667036 - samples/sec: 10.48 - lr: 0.000005
|
610 |
+
2021-01-16 03:42:54,138 ----------------------------------------------------------------------------------------------------
|
611 |
+
2021-01-16 03:42:54,138 EPOCH 1 done: loss 0.3267 - lr 0.0000050
|
612 |
+
2021-01-16 03:42:54,138 BAD EPOCHS (no improvement): 4
|
613 |
+
2021-01-16 03:42:54,141 ----------------------------------------------------------------------------------------------------
|
614 |
+
2021-01-16 03:44:32,764 epoch 2 - iter 256/2560 - loss 0.21108762 - samples/sec: 10.38 - lr: 0.000005
|
615 |
+
2021-01-16 03:46:11,253 epoch 2 - iter 512/2560 - loss 0.22128268 - samples/sec: 10.40 - lr: 0.000005
|
616 |
+
2021-01-16 03:47:49,772 epoch 2 - iter 768/2560 - loss 0.22246430 - samples/sec: 10.39 - lr: 0.000005
|
617 |
+
2021-01-16 03:49:28,129 epoch 2 - iter 1024/2560 - loss 0.21358276 - samples/sec: 10.41 - lr: 0.000005
|
618 |
+
2021-01-16 03:51:06,924 epoch 2 - iter 1280/2560 - loss 0.21429265 - samples/sec: 10.37 - lr: 0.000005
|
619 |
+
2021-01-16 03:52:46,984 epoch 2 - iter 1536/2560 - loss 0.21196466 - samples/sec: 10.23 - lr: 0.000005
|
620 |
+
2021-01-16 03:54:29,705 epoch 2 - iter 1792/2560 - loss 0.21758704 - samples/sec: 9.97 - lr: 0.000005
|
621 |
+
2021-01-16 03:56:10,481 epoch 2 - iter 2048/2560 - loss 0.21965157 - samples/sec: 10.16 - lr: 0.000005
|
622 |
+
2021-01-16 03:57:50,615 epoch 2 - iter 2304/2560 - loss 0.21877101 - samples/sec: 10.23 - lr: 0.000005
|
623 |
+
2021-01-16 03:59:31,158 epoch 2 - iter 2560/2560 - loss 0.21954602 - samples/sec: 10.19 - lr: 0.000005
|
624 |
+
2021-01-16 03:59:31,160 ----------------------------------------------------------------------------------------------------
|
625 |
+
2021-01-16 03:59:31,160 EPOCH 2 done: loss 0.2195 - lr 0.0000049
|
626 |
+
2021-01-16 03:59:31,160 BAD EPOCHS (no improvement): 4
|
627 |
+
2021-01-16 03:59:31,163 ----------------------------------------------------------------------------------------------------
|
628 |
+
2021-01-16 04:01:11,656 epoch 3 - iter 256/2560 - loss 0.20612080 - samples/sec: 10.19 - lr: 0.000005
|
629 |
+
2021-01-16 04:02:51,941 epoch 3 - iter 512/2560 - loss 0.19317841 - samples/sec: 10.21 - lr: 0.000005
|
630 |
+
2021-01-16 04:04:32,511 epoch 3 - iter 768/2560 - loss 0.19963626 - samples/sec: 10.18 - lr: 0.000005
|
631 |
+
2021-01-16 04:06:11,909 epoch 3 - iter 1024/2560 - loss 0.19312694 - samples/sec: 10.30 - lr: 0.000005
|
632 |
+
2021-01-16 04:07:53,866 epoch 3 - iter 1280/2560 - loss 0.19674287 - samples/sec: 10.04 - lr: 0.000005
|
633 |
+
2021-01-16 04:09:33,688 epoch 3 - iter 1536/2560 - loss 0.19699039 - samples/sec: 10.26 - lr: 0.000005
|
634 |
+
2021-01-16 04:11:13,497 epoch 3 - iter 1792/2560 - loss 0.19513463 - samples/sec: 10.26 - lr: 0.000005
|
635 |
+
2021-01-16 04:12:53,541 epoch 3 - iter 2048/2560 - loss 0.19334227 - samples/sec: 10.24 - lr: 0.000005
|
636 |
+
2021-01-16 04:14:33,916 epoch 3 - iter 2304/2560 - loss 0.19294838 - samples/sec: 10.20 - lr: 0.000005
|
637 |
+
2021-01-16 04:16:13,001 epoch 3 - iter 2560/2560 - loss 0.19331988 - samples/sec: 10.34 - lr: 0.000005
|
638 |
+
2021-01-16 04:16:13,003 ----------------------------------------------------------------------------------------------------
|
639 |
+
2021-01-16 04:16:13,003 EPOCH 3 done: loss 0.1933 - lr 0.0000047
|
640 |
+
2021-01-16 04:16:13,003 BAD EPOCHS (no improvement): 4
|
641 |
+
2021-01-16 04:16:13,006 ----------------------------------------------------------------------------------------------------
|
642 |
+
2021-01-16 04:17:52,069 epoch 4 - iter 256/2560 - loss 0.16853571 - samples/sec: 10.34 - lr: 0.000005
|
643 |
+
2021-01-16 04:19:31,083 epoch 4 - iter 512/2560 - loss 0.16783710 - samples/sec: 10.34 - lr: 0.000005
|
644 |
+
2021-01-16 04:21:09,860 epoch 4 - iter 768/2560 - loss 0.17852492 - samples/sec: 10.37 - lr: 0.000005
|
645 |
+
2021-01-16 04:22:48,222 epoch 4 - iter 1024/2560 - loss 0.18170671 - samples/sec: 10.41 - lr: 0.000005
|
646 |
+
2021-01-16 04:24:28,304 epoch 4 - iter 1280/2560 - loss 0.17619093 - samples/sec: 10.23 - lr: 0.000005
|
647 |
+
2021-01-16 04:26:06,542 epoch 4 - iter 1536/2560 - loss 0.18313451 - samples/sec: 10.42 - lr: 0.000005
|
648 |
+
2021-01-16 04:27:44,976 epoch 4 - iter 1792/2560 - loss 0.18543083 - samples/sec: 10.40 - lr: 0.000005
|
649 |
+
2021-01-16 04:29:25,900 epoch 4 - iter 2048/2560 - loss 0.18948785 - samples/sec: 10.15 - lr: 0.000005
|
650 |
+
2021-01-16 04:31:03,494 epoch 4 - iter 2304/2560 - loss 0.18818842 - samples/sec: 10.49 - lr: 0.000005
|
651 |
+
2021-01-16 04:32:40,881 epoch 4 - iter 2560/2560 - loss 0.18725109 - samples/sec: 10.52 - lr: 0.000005
|
652 |
+
2021-01-16 04:32:40,883 ----------------------------------------------------------------------------------------------------
|
653 |
+
2021-01-16 04:32:40,884 EPOCH 4 done: loss 0.1873 - lr 0.0000045
|
654 |
+
2021-01-16 04:32:40,884 BAD EPOCHS (no improvement): 4
|
655 |
+
2021-01-16 04:32:40,886 ----------------------------------------------------------------------------------------------------
|
656 |
+
2021-01-16 04:34:18,022 epoch 5 - iter 256/2560 - loss 0.19665239 - samples/sec: 10.54 - lr: 0.000004
|
657 |
+
2021-01-16 04:35:54,846 epoch 5 - iter 512/2560 - loss 0.19948870 - samples/sec: 10.58 - lr: 0.000004
|
658 |
+
2021-01-16 04:37:32,278 epoch 5 - iter 768/2560 - loss 0.19201483 - samples/sec: 10.51 - lr: 0.000004
|
659 |
+
2021-01-16 04:39:11,686 epoch 5 - iter 1024/2560 - loss 0.18716260 - samples/sec: 10.30 - lr: 0.000004
|
660 |
+
2021-01-16 04:40:48,941 epoch 5 - iter 1280/2560 - loss 0.17767008 - samples/sec: 10.53 - lr: 0.000004
|
661 |
+
2021-01-16 04:42:26,151 epoch 5 - iter 1536/2560 - loss 0.17738586 - samples/sec: 10.53 - lr: 0.000004
|
662 |
+
2021-01-16 04:44:03,440 epoch 5 - iter 1792/2560 - loss 0.17437861 - samples/sec: 10.53 - lr: 0.000004
|
663 |
+
2021-01-16 04:45:40,641 epoch 5 - iter 2048/2560 - loss 0.17843058 - samples/sec: 10.54 - lr: 0.000004
|
664 |
+
2021-01-16 04:47:18,726 epoch 5 - iter 2304/2560 - loss 0.17962338 - samples/sec: 10.44 - lr: 0.000004
|
665 |
+
2021-01-16 04:48:56,938 epoch 5 - iter 2560/2560 - loss 0.17857406 - samples/sec: 10.43 - lr: 0.000004
|
666 |
+
2021-01-16 04:48:56,941 ----------------------------------------------------------------------------------------------------
|
667 |
+
2021-01-16 04:48:56,941 EPOCH 5 done: loss 0.1786 - lr 0.0000043
|
668 |
+
2021-01-16 04:48:56,941 BAD EPOCHS (no improvement): 4
|
669 |
+
2021-01-16 04:48:56,944 ----------------------------------------------------------------------------------------------------
|
670 |
+
2021-01-16 04:50:37,578 epoch 6 - iter 256/2560 - loss 0.19558805 - samples/sec: 10.18 - lr: 0.000004
|
671 |
+
2021-01-16 04:52:15,762 epoch 6 - iter 512/2560 - loss 0.17503759 - samples/sec: 10.43 - lr: 0.000004
|
672 |
+
2021-01-16 04:53:52,814 epoch 6 - iter 768/2560 - loss 0.17416353 - samples/sec: 10.55 - lr: 0.000004
|
673 |
+
2021-01-16 04:55:29,984 epoch 6 - iter 1024/2560 - loss 0.16483752 - samples/sec: 10.54 - lr: 0.000004
|
674 |
+
2021-01-16 04:57:07,349 epoch 6 - iter 1280/2560 - loss 0.16624319 - samples/sec: 10.52 - lr: 0.000004
|
675 |
+
2021-01-16 04:58:44,378 epoch 6 - iter 1536/2560 - loss 0.16546115 - samples/sec: 10.55 - lr: 0.000004
|
676 |
+
2021-01-16 05:00:21,884 epoch 6 - iter 1792/2560 - loss 0.16436590 - samples/sec: 10.50 - lr: 0.000004
|
677 |
+
2021-01-16 05:01:58,951 epoch 6 - iter 2048/2560 - loss 0.16724299 - samples/sec: 10.55 - lr: 0.000004
|
678 |
+
2021-01-16 05:03:36,482 epoch 6 - iter 2304/2560 - loss 0.16918433 - samples/sec: 10.50 - lr: 0.000004
|
679 |
+
2021-01-16 05:05:14,584 epoch 6 - iter 2560/2560 - loss 0.16921876 - samples/sec: 10.44 - lr: 0.000004
|
680 |
+
2021-01-16 05:05:14,587 ----------------------------------------------------------------------------------------------------
|
681 |
+
2021-01-16 05:05:14,587 EPOCH 6 done: loss 0.1692 - lr 0.0000040
|
682 |
+
2021-01-16 05:05:14,587 BAD EPOCHS (no improvement): 4
|
683 |
+
2021-01-16 05:05:14,599 ----------------------------------------------------------------------------------------------------
|
684 |
+
2021-01-16 05:06:51,663 epoch 7 - iter 256/2560 - loss 0.18482960 - samples/sec: 10.55 - lr: 0.000004
|
685 |
+
2021-01-16 05:08:28,534 epoch 7 - iter 512/2560 - loss 0.16880554 - samples/sec: 10.57 - lr: 0.000004
|
686 |
+
2021-01-16 05:10:05,876 epoch 7 - iter 768/2560 - loss 0.16822603 - samples/sec: 10.52 - lr: 0.000004
|
687 |
+
2021-01-16 05:11:42,818 epoch 7 - iter 1024/2560 - loss 0.17842509 - samples/sec: 10.56 - lr: 0.000004
|
688 |
+
2021-01-16 05:13:20,349 epoch 7 - iter 1280/2560 - loss 0.16997025 - samples/sec: 10.50 - lr: 0.000004
|
689 |
+
2021-01-16 05:14:57,279 epoch 7 - iter 1536/2560 - loss 0.16850697 - samples/sec: 10.57 - lr: 0.000004
|
690 |
+
2021-01-16 05:16:33,604 epoch 7 - iter 1792/2560 - loss 0.16897440 - samples/sec: 10.63 - lr: 0.000004
|
691 |
+
2021-01-16 05:18:11,130 epoch 7 - iter 2048/2560 - loss 0.16901586 - samples/sec: 10.50 - lr: 0.000004
|
692 |
+
2021-01-16 05:19:48,742 epoch 7 - iter 2304/2560 - loss 0.16746824 - samples/sec: 10.49 - lr: 0.000004
|
693 |
+
2021-01-16 05:21:27,376 epoch 7 - iter 2560/2560 - loss 0.16665962 - samples/sec: 10.38 - lr: 0.000004
|
694 |
+
2021-01-16 05:21:27,378 ----------------------------------------------------------------------------------------------------
|
695 |
+
2021-01-16 05:21:27,378 EPOCH 7 done: loss 0.1667 - lr 0.0000036
|
696 |
+
2021-01-16 05:21:27,378 BAD EPOCHS (no improvement): 4
|
697 |
+
2021-01-16 05:21:27,381 ----------------------------------------------------------------------------------------------------
|
698 |
+
2021-01-16 05:23:04,098 epoch 8 - iter 256/2560 - loss 0.17170512 - samples/sec: 10.59 - lr: 0.000004
|
699 |
+
2021-01-16 05:24:40,963 epoch 8 - iter 512/2560 - loss 0.16578343 - samples/sec: 10.57 - lr: 0.000004
|
700 |
+
2021-01-16 05:26:17,874 epoch 8 - iter 768/2560 - loss 0.15936900 - samples/sec: 10.57 - lr: 0.000004
|
701 |
+
2021-01-16 05:27:54,684 epoch 8 - iter 1024/2560 - loss 0.16254958 - samples/sec: 10.58 - lr: 0.000003
|
702 |
+
2021-01-16 05:29:31,674 epoch 8 - iter 1280/2560 - loss 0.16254652 - samples/sec: 10.56 - lr: 0.000003
|
703 |
+
2021-01-16 05:31:09,021 epoch 8 - iter 1536/2560 - loss 0.16126451 - samples/sec: 10.52 - lr: 0.000003
|
704 |
+
2021-01-16 05:32:48,943 epoch 8 - iter 1792/2560 - loss 0.15960888 - samples/sec: 10.25 - lr: 0.000003
|
705 |
+
2021-01-16 05:34:26,910 epoch 8 - iter 2048/2560 - loss 0.16106515 - samples/sec: 10.45 - lr: 0.000003
|
706 |
+
2021-01-16 05:36:05,072 epoch 8 - iter 2304/2560 - loss 0.15881735 - samples/sec: 10.43 - lr: 0.000003
|
707 |
+
2021-01-16 05:37:43,202 epoch 8 - iter 2560/2560 - loss 0.16070351 - samples/sec: 10.44 - lr: 0.000003
|
708 |
+
2021-01-16 05:37:43,204 ----------------------------------------------------------------------------------------------------
|
709 |
+
2021-01-16 05:37:43,204 EPOCH 8 done: loss 0.1607 - lr 0.0000033
|
710 |
+
2021-01-16 05:37:43,204 BAD EPOCHS (no improvement): 4
|
711 |
+
2021-01-16 05:37:43,207 ----------------------------------------------------------------------------------------------------
|
712 |
+
2021-01-16 05:39:21,420 epoch 9 - iter 256/2560 - loss 0.17227183 - samples/sec: 10.43 - lr: 0.000003
|
713 |
+
2021-01-16 05:40:59,261 epoch 9 - iter 512/2560 - loss 0.17554657 - samples/sec: 10.47 - lr: 0.000003
|
714 |
+
2021-01-16 05:42:38,175 epoch 9 - iter 768/2560 - loss 0.16616659 - samples/sec: 10.35 - lr: 0.000003
|
715 |
+
2021-01-16 05:44:16,618 epoch 9 - iter 1024/2560 - loss 0.16832605 - samples/sec: 10.40 - lr: 0.000003
|
716 |
+
2021-01-16 05:45:57,429 epoch 9 - iter 1280/2560 - loss 0.16394874 - samples/sec: 10.16 - lr: 0.000003
|
717 |
+
2021-01-16 05:47:35,957 epoch 9 - iter 1536/2560 - loss 0.16352007 - samples/sec: 10.39 - lr: 0.000003
|
718 |
+
2021-01-16 05:49:13,705 epoch 9 - iter 1792/2560 - loss 0.16385724 - samples/sec: 10.48 - lr: 0.000003
|
719 |
+
2021-01-16 05:50:52,424 epoch 9 - iter 2048/2560 - loss 0.16055360 - samples/sec: 10.37 - lr: 0.000003
|
720 |
+
2021-01-16 05:52:30,508 epoch 9 - iter 2304/2560 - loss 0.16334559 - samples/sec: 10.44 - lr: 0.000003
|
721 |
+
2021-01-16 05:54:08,468 epoch 9 - iter 2560/2560 - loss 0.16240605 - samples/sec: 10.45 - lr: 0.000003
|
722 |
+
2021-01-16 05:54:08,470 ----------------------------------------------------------------------------------------------------
|
723 |
+
2021-01-16 05:54:08,470 EPOCH 9 done: loss 0.1624 - lr 0.0000029
|
724 |
+
2021-01-16 05:54:08,470 BAD EPOCHS (no improvement): 4
|
725 |
+
2021-01-16 05:54:08,473 ----------------------------------------------------------------------------------------------------
|
726 |
+
2021-01-16 05:55:47,128 epoch 10 - iter 256/2560 - loss 0.16313144 - samples/sec: 10.38 - lr: 0.000003
|
727 |
+
2021-01-16 05:57:25,407 epoch 10 - iter 512/2560 - loss 0.15020732 - samples/sec: 10.42 - lr: 0.000003
|
728 |
+
2021-01-16 05:59:03,413 epoch 10 - iter 768/2560 - loss 0.15983365 - samples/sec: 10.45 - lr: 0.000003
|
729 |
+
2021-01-16 06:00:41,548 epoch 10 - iter 1024/2560 - loss 0.15880243 - samples/sec: 10.44 - lr: 0.000003
|
730 |
+
2021-01-16 06:02:19,846 epoch 10 - iter 1280/2560 - loss 0.15641733 - samples/sec: 10.42 - lr: 0.000003
|
731 |
+
2021-01-16 06:03:57,792 epoch 10 - iter 1536/2560 - loss 0.15979563 - samples/sec: 10.46 - lr: 0.000003
|
732 |
+
2021-01-16 06:05:37,942 epoch 10 - iter 1792/2560 - loss 0.15822496 - samples/sec: 10.23 - lr: 0.000003
|
733 |
+
2021-01-16 06:07:15,923 epoch 10 - iter 2048/2560 - loss 0.15759511 - samples/sec: 10.45 - lr: 0.000003
|
734 |
+
2021-01-16 06:08:53,939 epoch 10 - iter 2304/2560 - loss 0.15693087 - samples/sec: 10.45 - lr: 0.000003
|
735 |
+
2021-01-16 06:10:32,048 epoch 10 - iter 2560/2560 - loss 0.15801453 - samples/sec: 10.44 - lr: 0.000002
|
736 |
+
2021-01-16 06:10:32,051 ----------------------------------------------------------------------------------------------------
|
737 |
+
2021-01-16 06:10:32,051 EPOCH 10 done: loss 0.1580 - lr 0.0000025
|
738 |
+
2021-01-16 06:10:32,051 BAD EPOCHS (no improvement): 4
|
739 |
+
2021-01-16 06:10:32,054 ----------------------------------------------------------------------------------------------------
|
740 |
+
2021-01-16 06:12:10,483 epoch 11 - iter 256/2560 - loss 0.16742767 - samples/sec: 10.40 - lr: 0.000002
|
741 |
+
2021-01-16 06:13:48,782 epoch 11 - iter 512/2560 - loss 0.15327274 - samples/sec: 10.42 - lr: 0.000002
|
742 |
+
2021-01-16 06:15:26,970 epoch 11 - iter 768/2560 - loss 0.15209073 - samples/sec: 10.43 - lr: 0.000002
|
743 |
+
2021-01-16 06:17:05,366 epoch 11 - iter 1024/2560 - loss 0.14838890 - samples/sec: 10.41 - lr: 0.000002
|
744 |
+
2021-01-16 06:18:43,497 epoch 11 - iter 1280/2560 - loss 0.14857876 - samples/sec: 10.44 - lr: 0.000002
|
745 |
+
2021-01-16 06:20:21,564 epoch 11 - iter 1536/2560 - loss 0.14942513 - samples/sec: 10.44 - lr: 0.000002
|
746 |
+
2021-01-16 06:21:59,181 epoch 11 - iter 1792/2560 - loss 0.14977847 - samples/sec: 10.49 - lr: 0.000002
|
747 |
+
2021-01-16 06:23:37,984 epoch 11 - iter 2048/2560 - loss 0.15052564 - samples/sec: 10.37 - lr: 0.000002
|
748 |
+
2021-01-16 06:25:18,744 epoch 11 - iter 2304/2560 - loss 0.15348464 - samples/sec: 10.16 - lr: 0.000002
|
749 |
+
2021-01-16 06:26:56,801 epoch 11 - iter 2560/2560 - loss 0.15405217 - samples/sec: 10.44 - lr: 0.000002
|
750 |
+
2021-01-16 06:26:56,804 ----------------------------------------------------------------------------------------------------
|
751 |
+
2021-01-16 06:26:56,804 EPOCH 11 done: loss 0.1541 - lr 0.0000021
|
752 |
+
2021-01-16 06:26:56,804 BAD EPOCHS (no improvement): 4
|
753 |
+
2021-01-16 06:26:56,806 ----------------------------------------------------------------------------------------------------
|
754 |
+
2021-01-16 06:28:34,919 epoch 12 - iter 256/2560 - loss 0.14515525 - samples/sec: 10.44 - lr: 0.000002
|
755 |
+
2021-01-16 06:30:14,290 epoch 12 - iter 512/2560 - loss 0.16185121 - samples/sec: 10.31 - lr: 0.000002
|
756 |
+
2021-01-16 06:31:51,825 epoch 12 - iter 768/2560 - loss 0.15630178 - samples/sec: 10.50 - lr: 0.000002
|
757 |
+
2021-01-16 06:33:29,645 epoch 12 - iter 1024/2560 - loss 0.16061640 - samples/sec: 10.47 - lr: 0.000002
|
758 |
+
2021-01-16 06:35:07,390 epoch 12 - iter 1280/2560 - loss 0.16106939 - samples/sec: 10.48 - lr: 0.000002
|
759 |
+
2021-01-16 06:36:45,537 epoch 12 - iter 1536/2560 - loss 0.16553326 - samples/sec: 10.43 - lr: 0.000002
|
760 |
+
2021-01-16 06:38:23,976 epoch 12 - iter 1792/2560 - loss 0.16298360 - samples/sec: 10.40 - lr: 0.000002
|
761 |
+
2021-01-16 06:40:01,697 epoch 12 - iter 2048/2560 - loss 0.15791582 - samples/sec: 10.48 - lr: 0.000002
|
762 |
+
2021-01-16 06:41:40,081 epoch 12 - iter 2304/2560 - loss 0.15724189 - samples/sec: 10.41 - lr: 0.000002
|
763 |
+
2021-01-16 06:43:17,722 epoch 12 - iter 2560/2560 - loss 0.15517561 - samples/sec: 10.49 - lr: 0.000002
|
764 |
+
2021-01-16 06:43:17,724 ----------------------------------------------------------------------------------------------------
|
765 |
+
2021-01-16 06:43:17,724 EPOCH 12 done: loss 0.1552 - lr 0.0000017
|
766 |
+
2021-01-16 06:43:17,724 BAD EPOCHS (no improvement): 4
|
767 |
+
2021-01-16 06:43:17,727 ----------------------------------------------------------------------------------------------------
|
768 |
+
2021-01-16 06:44:55,687 epoch 13 - iter 256/2560 - loss 0.15713525 - samples/sec: 10.45 - lr: 0.000002
|
769 |
+
2021-01-16 06:46:36,001 epoch 13 - iter 512/2560 - loss 0.15100717 - samples/sec: 10.21 - lr: 0.000002
|
770 |
+
2021-01-16 06:48:13,819 epoch 13 - iter 768/2560 - loss 0.15847721 - samples/sec: 10.47 - lr: 0.000002
|
771 |
+
2021-01-16 06:49:52,306 epoch 13 - iter 1024/2560 - loss 0.15904259 - samples/sec: 10.40 - lr: 0.000002
|
772 |
+
2021-01-16 06:51:29,891 epoch 13 - iter 1280/2560 - loss 0.15989578 - samples/sec: 10.49 - lr: 0.000002
|
773 |
+
2021-01-16 06:53:08,047 epoch 13 - iter 1536/2560 - loss 0.15584846 - samples/sec: 10.43 - lr: 0.000002
|
774 |
+
2021-01-16 06:54:45,903 epoch 13 - iter 1792/2560 - loss 0.15456669 - samples/sec: 10.47 - lr: 0.000001
|
775 |
+
2021-01-16 06:56:23,958 epoch 13 - iter 2048/2560 - loss 0.15476196 - samples/sec: 10.44 - lr: 0.000001
|
776 |
+
2021-01-16 06:58:01,860 epoch 13 - iter 2304/2560 - loss 0.15554818 - samples/sec: 10.46 - lr: 0.000001
|
777 |
+
2021-01-16 06:59:39,510 epoch 13 - iter 2560/2560 - loss 0.15582554 - samples/sec: 10.49 - lr: 0.000001
|
778 |
+
2021-01-16 06:59:39,513 ----------------------------------------------------------------------------------------------------
|
779 |
+
2021-01-16 06:59:39,513 EPOCH 13 done: loss 0.1558 - lr 0.0000014
|
780 |
+
2021-01-16 06:59:39,513 BAD EPOCHS (no improvement): 4
|
781 |
+
2021-01-16 06:59:39,536 ----------------------------------------------------------------------------------------------------
|
782 |
+
2021-01-16 07:01:17,550 epoch 14 - iter 256/2560 - loss 0.14336771 - samples/sec: 10.45 - lr: 0.000001
|
783 |
+
2021-01-16 07:02:55,149 epoch 14 - iter 512/2560 - loss 0.13420979 - samples/sec: 10.49 - lr: 0.000001
|
784 |
+
2021-01-16 07:04:33,295 epoch 14 - iter 768/2560 - loss 0.14666678 - samples/sec: 10.43 - lr: 0.000001
|
785 |
+
2021-01-16 07:06:11,482 epoch 14 - iter 1024/2560 - loss 0.14107045 - samples/sec: 10.43 - lr: 0.000001
|
786 |
+
2021-01-16 07:07:50,423 epoch 14 - iter 1280/2560 - loss 0.14810884 - samples/sec: 10.35 - lr: 0.000001
|
787 |
+
2021-01-16 07:09:29,149 epoch 14 - iter 1536/2560 - loss 0.15039081 - samples/sec: 10.37 - lr: 0.000001
|
788 |
+
2021-01-16 07:11:08,549 epoch 14 - iter 1792/2560 - loss 0.15404881 - samples/sec: 10.30 - lr: 0.000001
|
789 |
+
2021-01-16 07:12:48,860 epoch 14 - iter 2048/2560 - loss 0.15398198 - samples/sec: 10.21 - lr: 0.000001
|
790 |
+
2021-01-16 07:14:26,993 epoch 14 - iter 2304/2560 - loss 0.15119867 - samples/sec: 10.44 - lr: 0.000001
|
791 |
+
2021-01-16 07:16:07,905 epoch 14 - iter 2560/2560 - loss 0.14988600 - samples/sec: 10.15 - lr: 0.000001
|
792 |
+
2021-01-16 07:16:07,907 ----------------------------------------------------------------------------------------------------
|
793 |
+
2021-01-16 07:16:07,907 EPOCH 14 done: loss 0.1499 - lr 0.0000010
|
794 |
+
2021-01-16 07:16:07,907 BAD EPOCHS (no improvement): 4
|
795 |
+
2021-01-16 07:16:07,910 ----------------------------------------------------------------------------------------------------
|
796 |
+
2021-01-16 07:17:47,163 epoch 15 - iter 256/2560 - loss 0.13211162 - samples/sec: 10.32 - lr: 0.000001
|
797 |
+
2021-01-16 07:19:26,428 epoch 15 - iter 512/2560 - loss 0.14312262 - samples/sec: 10.32 - lr: 0.000001
|
798 |
+
2021-01-16 07:21:04,402 epoch 15 - iter 768/2560 - loss 0.14991927 - samples/sec: 10.45 - lr: 0.000001
|
799 |
+
2021-01-16 07:22:42,083 epoch 15 - iter 1024/2560 - loss 0.15132502 - samples/sec: 10.48 - lr: 0.000001
|
800 |
+
2021-01-16 07:24:23,248 epoch 15 - iter 1280/2560 - loss 0.15012698 - samples/sec: 10.12 - lr: 0.000001
|
801 |
+
2021-01-16 07:26:02,510 epoch 15 - iter 1536/2560 - loss 0.15443282 - samples/sec: 10.32 - lr: 0.000001
|
802 |
+
2021-01-16 07:27:41,227 epoch 15 - iter 1792/2560 - loss 0.15337861 - samples/sec: 10.37 - lr: 0.000001
|
803 |
+
2021-01-16 07:29:19,916 epoch 15 - iter 2048/2560 - loss 0.15342457 - samples/sec: 10.38 - lr: 0.000001
|
804 |
+
2021-01-16 07:30:58,353 epoch 15 - iter 2304/2560 - loss 0.15126241 - samples/sec: 10.40 - lr: 0.000001
|
805 |
+
2021-01-16 07:32:36,692 epoch 15 - iter 2560/2560 - loss 0.14841692 - samples/sec: 10.41 - lr: 0.000001
|
806 |
+
2021-01-16 07:32:36,694 ----------------------------------------------------------------------------------------------------
|
807 |
+
2021-01-16 07:32:36,694 EPOCH 15 done: loss 0.1484 - lr 0.0000007
|
808 |
+
2021-01-16 07:32:36,694 BAD EPOCHS (no improvement): 4
|
809 |
+
2021-01-16 07:32:36,700 ----------------------------------------------------------------------------------------------------
|
810 |
+
2021-01-16 07:34:15,608 epoch 16 - iter 256/2560 - loss 0.14154861 - samples/sec: 10.35 - lr: 0.000001
|
811 |
+
2021-01-16 07:35:54,182 epoch 16 - iter 512/2560 - loss 0.15666068 - samples/sec: 10.39 - lr: 0.000001
|
812 |
+
2021-01-16 07:37:32,436 epoch 16 - iter 768/2560 - loss 0.14965853 - samples/sec: 10.42 - lr: 0.000001
|
813 |
+
2021-01-16 07:39:11,322 epoch 16 - iter 1024/2560 - loss 0.14517837 - samples/sec: 10.36 - lr: 0.000001
|
814 |
+
2021-01-16 07:40:50,070 epoch 16 - iter 1280/2560 - loss 0.15012946 - samples/sec: 10.37 - lr: 0.000001
|
815 |
+
2021-01-16 07:42:28,901 epoch 16 - iter 1536/2560 - loss 0.14944365 - samples/sec: 10.36 - lr: 0.000001
|
816 |
+
2021-01-16 07:44:07,511 epoch 16 - iter 1792/2560 - loss 0.15203691 - samples/sec: 10.39 - lr: 0.000001
|
817 |
+
2021-01-16 07:45:46,097 epoch 16 - iter 2048/2560 - loss 0.15361748 - samples/sec: 10.39 - lr: 0.000001
|
818 |
+
2021-01-16 07:47:24,743 epoch 16 - iter 2304/2560 - loss 0.15600239 - samples/sec: 10.38 - lr: 0.000001
|
819 |
+
2021-01-16 07:49:05,943 epoch 16 - iter 2560/2560 - loss 0.15282003 - samples/sec: 10.12 - lr: 0.000000
|
820 |
+
2021-01-16 07:49:05,945 ----------------------------------------------------------------------------------------------------
|
821 |
+
2021-01-16 07:49:05,945 EPOCH 16 done: loss 0.1528 - lr 0.0000005
|
822 |
+
2021-01-16 07:49:05,945 BAD EPOCHS (no improvement): 4
|
823 |
+
2021-01-16 07:49:05,948 ----------------------------------------------------------------------------------------------------
|
824 |
+
2021-01-16 07:50:44,838 epoch 17 - iter 256/2560 - loss 0.16498748 - samples/sec: 10.36 - lr: 0.000000
|
825 |
+
2021-01-16 07:52:23,007 epoch 17 - iter 512/2560 - loss 0.16360209 - samples/sec: 10.43 - lr: 0.000000
|
826 |
+
2021-01-16 07:54:00,994 epoch 17 - iter 768/2560 - loss 0.15339211 - samples/sec: 10.45 - lr: 0.000000
|
827 |
+
2021-01-16 07:55:39,191 epoch 17 - iter 1024/2560 - loss 0.15505899 - samples/sec: 10.43 - lr: 0.000000
|
828 |
+
2021-01-16 07:57:19,956 epoch 17 - iter 1280/2560 - loss 0.15433689 - samples/sec: 10.16 - lr: 0.000000
|
829 |
+
2021-01-16 07:58:58,357 epoch 17 - iter 1536/2560 - loss 0.15255959 - samples/sec: 10.41 - lr: 0.000000
|
830 |
+
2021-01-16 08:00:36,819 epoch 17 - iter 1792/2560 - loss 0.15399288 - samples/sec: 10.40 - lr: 0.000000
|
831 |
+
2021-01-16 08:02:15,472 epoch 17 - iter 2048/2560 - loss 0.15148049 - samples/sec: 10.38 - lr: 0.000000
|
832 |
+
2021-01-16 08:03:54,072 epoch 17 - iter 2304/2560 - loss 0.15382739 - samples/sec: 10.39 - lr: 0.000000
|
833 |
+
2021-01-16 08:05:31,830 epoch 17 - iter 2560/2560 - loss 0.15712540 - samples/sec: 10.48 - lr: 0.000000
|
834 |
+
2021-01-16 08:05:31,833 ----------------------------------------------------------------------------------------------------
|
835 |
+
2021-01-16 08:05:31,833 EPOCH 17 done: loss 0.1571 - lr 0.0000003
|
836 |
+
2021-01-16 08:05:31,833 BAD EPOCHS (no improvement): 4
|
837 |
+
2021-01-16 08:05:31,841 ----------------------------------------------------------------------------------------------------
|
838 |
+
2021-01-16 08:07:10,239 epoch 18 - iter 256/2560 - loss 0.15978983 - samples/sec: 10.41 - lr: 0.000000
|
839 |
+
2021-01-16 08:08:48,106 epoch 18 - iter 512/2560 - loss 0.14347639 - samples/sec: 10.46 - lr: 0.000000
|
840 |
+
2021-01-16 08:10:26,495 epoch 18 - iter 768/2560 - loss 0.15206254 - samples/sec: 10.41 - lr: 0.000000
|
841 |
+
2021-01-16 08:12:04,438 epoch 18 - iter 1024/2560 - loss 0.16796272 - samples/sec: 10.46 - lr: 0.000000
|
842 |
+
2021-01-16 08:13:42,204 epoch 18 - iter 1280/2560 - loss 0.16531154 - samples/sec: 10.48 - lr: 0.000000
|
843 |
+
2021-01-16 08:15:23,133 epoch 18 - iter 1536/2560 - loss 0.16233384 - samples/sec: 10.15 - lr: 0.000000
|
844 |
+
2021-01-16 08:17:01,293 epoch 18 - iter 1792/2560 - loss 0.16011966 - samples/sec: 10.43 - lr: 0.000000
|
845 |
+
2021-01-16 08:18:39,512 epoch 18 - iter 2048/2560 - loss 0.16087553 - samples/sec: 10.43 - lr: 0.000000
|
846 |
+
2021-01-16 08:20:17,092 epoch 18 - iter 2304/2560 - loss 0.16158800 - samples/sec: 10.50 - lr: 0.000000
|
847 |
+
2021-01-16 08:21:54,438 epoch 18 - iter 2560/2560 - loss 0.16291885 - samples/sec: 10.52 - lr: 0.000000
|
848 |
+
2021-01-16 08:21:54,441 ----------------------------------------------------------------------------------------------------
|
849 |
+
2021-01-16 08:21:54,441 EPOCH 18 done: loss 0.1629 - lr 0.0000001
|
850 |
+
2021-01-16 08:21:54,441 BAD EPOCHS (no improvement): 4
|
851 |
+
2021-01-16 08:21:54,456 ----------------------------------------------------------------------------------------------------
|
852 |
+
2021-01-16 08:23:31,809 epoch 19 - iter 256/2560 - loss 0.13830293 - samples/sec: 10.52 - lr: 0.000000
|
853 |
+
2021-01-16 08:25:09,222 epoch 19 - iter 512/2560 - loss 0.14792782 - samples/sec: 10.51 - lr: 0.000000
|
854 |
+
2021-01-16 08:26:47,079 epoch 19 - iter 768/2560 - loss 0.13707639 - samples/sec: 10.47 - lr: 0.000000
|
855 |
+
2021-01-16 08:28:27,701 epoch 19 - iter 1024/2560 - loss 0.13387744 - samples/sec: 10.18 - lr: 0.000000
|
856 |
+
2021-01-16 08:30:05,328 epoch 19 - iter 1280/2560 - loss 0.13241945 - samples/sec: 10.49 - lr: 0.000000
|
857 |
+
2021-01-16 08:31:43,732 epoch 19 - iter 1536/2560 - loss 0.13879341 - samples/sec: 10.41 - lr: 0.000000
|
858 |
+
2021-01-16 08:33:21,817 epoch 19 - iter 1792/2560 - loss 0.13955545 - samples/sec: 10.44 - lr: 0.000000
|
859 |
+
2021-01-16 08:34:59,377 epoch 19 - iter 2048/2560 - loss 0.13983331 - samples/sec: 10.50 - lr: 0.000000
|
860 |
+
2021-01-16 08:36:36,814 epoch 19 - iter 2304/2560 - loss 0.14005413 - samples/sec: 10.51 - lr: 0.000000
|
861 |
+
2021-01-16 08:38:14,963 epoch 19 - iter 2560/2560 - loss 0.14057681 - samples/sec: 10.43 - lr: 0.000000
|
862 |
+
2021-01-16 08:38:14,965 ----------------------------------------------------------------------------------------------------
|
863 |
+
2021-01-16 08:38:14,965 EPOCH 19 done: loss 0.1406 - lr 0.0000000
|
864 |
+
2021-01-16 08:38:14,965 BAD EPOCHS (no improvement): 4
|
865 |
+
2021-01-16 08:38:14,968 ----------------------------------------------------------------------------------------------------
|
866 |
+
2021-01-16 08:39:54,826 epoch 20 - iter 256/2560 - loss 0.14269958 - samples/sec: 10.26 - lr: 0.000000
|
867 |
+
2021-01-16 08:41:32,343 epoch 20 - iter 512/2560 - loss 0.13295984 - samples/sec: 10.50 - lr: 0.000000
|
868 |
+
2021-01-16 08:43:09,612 epoch 20 - iter 768/2560 - loss 0.13303004 - samples/sec: 10.53 - lr: 0.000000
|
869 |
+
2021-01-16 08:44:46,898 epoch 20 - iter 1024/2560 - loss 0.13511050 - samples/sec: 10.53 - lr: 0.000000
|
870 |
+
2021-01-16 08:46:24,453 epoch 20 - iter 1280/2560 - loss 0.14147167 - samples/sec: 10.50 - lr: 0.000000
|
871 |
+
2021-01-16 08:48:01,998 epoch 20 - iter 1536/2560 - loss 0.14640782 - samples/sec: 10.50 - lr: 0.000000
|
872 |
+
2021-01-16 08:49:39,864 epoch 20 - iter 1792/2560 - loss 0.14698716 - samples/sec: 10.46 - lr: 0.000000
|
873 |
+
2021-01-16 08:51:17,251 epoch 20 - iter 2048/2560 - loss 0.14558654 - samples/sec: 10.52 - lr: 0.000000
|
874 |
+
2021-01-16 08:52:55,347 epoch 20 - iter 2304/2560 - loss 0.14717600 - samples/sec: 10.44 - lr: 0.000000
|
875 |
+
2021-01-16 08:54:33,232 epoch 20 - iter 2560/2560 - loss 0.14611906 - samples/sec: 10.46 - lr: 0.000000
|
876 |
+
2021-01-16 08:54:33,234 ----------------------------------------------------------------------------------------------------
|
877 |
+
2021-01-16 08:54:33,234 EPOCH 20 done: loss 0.1461 - lr 0.0000000
|
878 |
+
2021-01-16 08:54:33,234 BAD EPOCHS (no improvement): 4
|
879 |
+
2021-01-16 08:55:12,409 ----------------------------------------------------------------------------------------------------
|
880 |
+
2021-01-16 08:55:12,409 Testing using best model ...
|
881 |
+
2021-01-16 08:56:13,946 0.9021 0.9087 0.9054
|
882 |
+
2021-01-16 08:56:13,946
|
883 |
+
Results:
|
884 |
+
- F1-score (micro) 0.9054
|
885 |
+
- F1-score (macro) 0.8961
|
886 |
+
|
887 |
+
By class:
|
888 |
+
LOC tp: 942 - fp: 87 - fn: 142 - precision: 0.9155 - recall: 0.8690 - f1-score: 0.8916
|
889 |
+
MISC tp: 272 - fp: 57 - fn: 68 - precision: 0.8267 - recall: 0.8000 - f1-score: 0.8132
|
890 |
+
ORG tp: 1292 - fp: 188 - fn: 108 - precision: 0.8730 - recall: 0.9229 - f1-score: 0.8972
|
891 |
+
PER tp: 728 - fp: 19 - fn: 7 - precision: 0.9746 - recall: 0.9905 - f1-score: 0.9825
|
892 |
+
2021-01-16 08:56:13,946 ----------------------------------------------------------------------------------------------------
|