Edit model card

Model Information

Quantized version of meta-llama/Llama-3.1-8B-Instruct using torch.float32 for quantization tuning.

  • 4 bits (INT4)
  • group size = 128
  • Asymmetrical Quantization

Fast and low memory, 2-3X speedup (slight accuracy drop at W4G128)

Quantization framework: Intel AutoRound

Note: this INT4 version of Llama-3.1-8B-Instruct has been quantized to run inference through CPU.

Replication Recipe

Step 1 Install Requirements

I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.

python -m pip install <package> --upgrade
  • accelerate==1.0.1
  • auto_gptq==0.7.1
  • neural_compressor==3.1
  • torch==2.3.0+cpu
  • torchaudio==2.5.0+cpu
  • torchvision==0.18.0+cpu
  • transformers==4.45.2

Step 2 Build Intel Autoround wheel from sources

python -m pip install git+https://github.com/intel/auto-round.git

Step 3 Script for Quantization

  from transformers import AutoModelForCausalLM, AutoTokenizer
  model_name = "meta-llama/Llama-3.1-8B-Instruct"
  model = AutoModelForCausalLM.from_pretrained(model_name)
  tokenizer = AutoTokenizer.from_pretrained(model_name)
  from auto_round import AutoRound
  bits, group_size, sym = 4, 128, False
  autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym)
  autoround.quantize()
  output_dir = "./AutoRound/meta-llama_Llama-3.1-8B-Instruct-auto_round-int4-gs128-asym"
  autoround.save_quantized(output_dir, format='auto_round', inplace=True)

License

Llama 3.1 Community License

Disclaimer

This quantized model comes with no warrenty. It has been developed only for research purposes.

Downloads last month
13
Safetensors
Model size
1.99B params
Tensor type
F32
I32
FP16
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for fbaldassarri/meta-llama_Llama-3.1-8B-Instruct-auto_round-int4-gs128-asym

Quantized
(269)
this model