Edit model card

whisper-sm-el-intlv-xl

This model is a fine-tuned version of openai/whisper-small on the mozilla-foundation/common_voice_11_0 (el) and the google/fleurs (el_gr) datasets. It achieves the following results on the evaluation set:

  • Loss: 0.4725
  • Wer: 19.4837

Model description

The model was trained over 10000 steps on translation from Greek to English.

Intended uses & limitations

This model was part of the Whisper Finetuning Event (Dec 2022) and was used primarily to compare relative improvements between transcription and translation tasks.

Training and evaluation data

The training datasets combined examples from both train and evaluation splits and use the train split of the mozilla-foundation/common_voice_11_0 (el) dataset for evaluation and selection of the best checkpoint.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8.5e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0545 2.49 1000 0.2891 22.4926
0.0093 4.98 2000 0.3927 20.1337
0.0018 7.46 3000 0.4031 20.1616
0.001 9.95 4000 0.4209 19.6880
0.0008 12.44 5000 0.4498 20.0966
0.0005 14.93 6000 0.4725 19.4837
0.0002 17.41 7000 0.4917 19.5951
0.0001 19.9 8000 0.5050 19.6230
0.0001 22.39 9000 0.5146 19.5672
0.0001 24.88 10000 0.5186 19.4837

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0
  • Datasets 2.7.1.dev0
  • Tokenizers 0.12.1
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train farsipal/whisper-sm-el-intlv-xl

Evaluation results