Edit model card

patent-summarization-fb-bart-base-2022-09-20

This model is a fine-tuned version of facebook/bart-base on the farleyknight/big_patent_5_percent dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4088
  • Rouge1: 39.4401
  • Rouge2: 14.2445
  • Rougel: 26.2701
  • Rougelsum: 33.7535
  • Gen Len: 78.9702

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
3.0567 0.08 5000 2.8864 18.9387 7.1014 15.4506 16.8377 19.9979
2.9285 0.17 10000 2.7800 19.8983 7.3258 16.0823 17.7019 20.0
2.9252 0.25 15000 2.7080 19.6623 7.4627 16.0153 17.4485 20.0
2.8123 0.33 20000 2.6585 19.7414 7.5251 15.8166 17.4668 20.0
2.7117 0.41 25000 2.6070 19.7661 7.7193 16.2795 17.7884 20.0
2.7131 0.5 30000 2.5616 19.6706 7.4229 15.7998 17.4324 20.0
2.6373 0.58 35000 2.5250 20.0155 7.6811 16.1231 17.7578 20.0
2.6785 0.66 40000 2.4977 20.0974 7.9578 16.543 18.0242 20.0
2.6265 0.75 45000 2.4701 19.994 7.9114 16.3501 17.8786 20.0
2.5833 0.83 50000 2.4441 19.9981 7.934 16.3033 17.8674 20.0
2.5579 0.91 55000 2.4251 20.0544 7.8966 16.3889 17.9491 20.0
2.5242 0.99 60000 2.4097 20.1093 8.0572 16.4935 17.9823 20.0

Framework versions

  • Transformers 4.23.0.dev0
  • Pytorch 1.12.0
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train farleyknight/patent-summarization-fb-bart-base-2022-09-20

Evaluation results