This model's benchmark results
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | ||
---|---|---|---|---|---|---|---|---|
tinyBenchmarks | N/A | |||||||
- tinyArc | 0 | none | 25 | acc_norm | ↑ | 0.4253 | ± | N/A |
- tinyGSM8k | 0 | flexible-extract | 5 | exact_match | ↑ | 0.3768 | ± | N/A |
strict-match | 5 | exact_match | ↑ | 0.3768 | ± | N/A | ||
- tinyHellaswag | 0 | none | 10 | acc_norm | ↑ | 0.5379 | ± | N/A |
- tinyMMLU | 0 | none | 0 | acc_norm | ↑ | 0.4483 | ± | N/A |
- tinyTruthfulQA | 0 | none | 0 | acc | ↑ | 0.4217 | ± | N/A |
- tinyWinogrande | 0 | none | 5 | acc_norm | ↑ | 0.5366 | ± | N/A |
Original meta-llama/Llama-3.2-1B-Instruct
benchmark results
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | ||
---|---|---|---|---|---|---|---|---|
tinyBenchmarks | N/A | |||||||
- tinyArc | 0 | none | 25 | acc_norm | ↑ | 0.4145 | ± | N/A |
- tinyGSM8k | 0 | flexible-extract | 5 | exact_match | ↑ | 0.3412 | ± | N/A |
strict-match | 5 | exact_match | ↑ | 0.3412 | ± | N/A | ||
- tinyHellaswag | 0 | none | 10 | acc_norm | ↑ | 0.5335 | ± | N/A |
- tinyMMLU | 0 | none | 0 | acc_norm | ↑ | 0.4298 | ± | N/A |
- tinyTruthfulQA | 0 | none | 0 | acc | ↑ | 0.4288 | ± | N/A |
- tinyWinogrande | 0 | none | 5 | acc_norm | ↑ | 0.5366 | ± | N/A |
Below is a side-by-side comparison of the two result sets. For each task, the higher value (i.e., “better” on that metric) is highlighted in bold:
Task | this | orig | Better? |
---|---|---|---|
tinyArc (acc_norm) | 0.4253 | 0.4145 | v1 higher |
tinyGSM8k (exact_match) | 0.3768 | 0.3412 | v1 higher |
tinyHellaswag (acc_norm) | 0.5379 | 0.5335 | v1 higher |
tinyMMLU (acc_norm) | 0.4483 | 0.4298 | v1 higher |
tinyTruthfulQA (acc) | 0.4217 | 0.4288 | v2 higher |
tinyWinogrande (acc_norm) | 0.5366 | 0.5366 | tie |
Observations
- Ours outperforms the original on four tasks (tinyArc, tinyGSM8k, tinyHellaswag, tinyMMLU).
- The original outperforms ours on one task (tinyTruthfulQA).
- One task is a tie (tinyWinogrande).
Given these comparisons, our results are stronger overall because it has higher scores on the majority of tasks. The only exception is on tinyTruthfulQA, where the original scores slightly better, and on tinyWinogrande, both versions tie.
- Downloads last month
- 230
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ericflo/Llama-3.2-1B-Instruct-RLHF-v0.1
Base model
meta-llama/Llama-3.2-1B-Instruct