Edit model card

edyfjm07/distilbert-base-uncased-QA3-finetuned-squad-es

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 5.9545
  • Train End Logits Accuracy: 0.0032
  • Train Start Logits Accuracy: 0.0
  • Validation Loss: 5.9506
  • Validation End Logits Accuracy: 0.0
  • Validation Start Logits Accuracy: 0.0063
  • Epoch: 40

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.001, 'decay_steps': 2419, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train End Logits Accuracy Train Start Logits Accuracy Validation Loss Validation End Logits Accuracy Validation Start Logits Accuracy Epoch
4.7467 0.1006 0.0561 5.8046 0.0157 0.0878 0
4.8045 0.0148 0.0138 5.2042 0.0094 0.0094 1
5.9402 0.0032 0.0053 5.9506 0.0031 0.0063 2
5.9626 0.0021 0.0021 5.9506 0.0031 0.0031 3
5.9599 0.0042 0.0 5.9506 0.0 0.0 4
5.9718 0.0 0.0011 5.9506 0.0 0.0031 5
5.9587 0.0021 0.0064 5.9506 0.0031 0.0031 6
5.9657 0.0064 0.0032 5.9506 0.0031 0.0188 7
5.9617 0.0021 0.0032 5.9506 0.0031 0.0063 8
5.9596 0.0021 0.0032 5.9506 0.0 0.0031 9
5.9648 0.0021 0.0021 5.9506 0.0094 0.0063 10
5.9608 0.0021 0.0032 5.9506 0.0125 0.0094 11
5.9567 0.0021 0.0053 5.9506 0.0063 0.0 12
5.9625 0.0011 0.0011 5.9506 0.0 0.0 13
5.9640 0.0 0.0011 5.9506 0.0031 0.0 14
5.9606 0.0011 0.0 5.9506 0.0063 0.0063 15
5.9622 0.0032 0.0053 5.9506 0.0094 0.0063 16
5.9600 0.0011 0.0021 5.9506 0.0 0.0063 17
5.9579 0.0011 0.0011 5.9506 0.0063 0.0094 18
5.9598 0.0032 0.0053 5.9506 0.0031 0.0 19
5.9589 0.0021 0.0032 5.9506 0.0063 0.0031 20
5.9566 0.0032 0.0021 5.9506 0.0 0.0 21
5.9536 0.0011 0.0053 5.9506 0.0 0.0 22
5.9592 0.0021 0.0021 5.9506 0.0031 0.0031 23
5.9548 0.0032 0.0042 5.9506 0.0 0.0 24
5.9569 0.0 0.0021 5.9506 0.0 0.0 25
5.9640 0.0032 0.0011 5.9506 0.0031 0.0031 26
5.9497 0.0011 0.0011 5.9506 0.0 0.0031 27
5.9558 0.0 0.0053 5.9506 0.0063 0.0031 28
5.9563 0.0021 0.0032 5.9506 0.0063 0.0063 29
5.9585 0.0032 0.0032 5.9506 0.0 0.0094 30
5.9569 0.0011 0.0021 5.9506 0.0094 0.0063 31
5.9580 0.0011 0.0021 5.9506 0.0063 0.0 32
5.9532 0.0032 0.0011 5.9506 0.0 0.0063 33
5.9523 0.0021 0.0032 5.9506 0.0 0.0 34
5.9552 0.0042 0.0011 5.9506 0.0 0.0 35
5.9538 0.0021 0.0032 5.9506 0.0 0.0 36
5.9538 0.0032 0.0032 5.9506 0.0031 0.0063 37
5.9567 0.0011 0.0021 5.9506 0.0063 0.0031 38
5.9570 0.0053 0.0032 5.9506 0.0 0.0031 39
5.9545 0.0032 0.0 5.9506 0.0 0.0063 40

Framework versions

  • Transformers 4.41.2
  • TensorFlow 2.15.0
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for edyfjm07/distilbert-base-uncased-QA3-finetuned-squad-es

Finetuned
(6783)
this model

Dataset used to train edyfjm07/distilbert-base-uncased-QA3-finetuned-squad-es