See axolotl config
axolotl version: 0.4.1
base_model: Qwen/Qwen2.5-14B-Instruct
model_type: Qwen2ForCausalLM
tokenizer_type: Qwen2Tokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: dwikitheduck/genesist-inst-rag-39K
type: completion
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out
sequence_len: 4096
sample_packing: false
pad_to_sequence_len:
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: axolotl-soca
wandb_entity: soca-ai
wandb_watch:
wandb_name:
wandb_log_model:
hub_model_id: dwikitheduck/gen-try-1
gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
save_safetensors: true
gen-try-1
This model is a fine-tuned version of Qwen/Qwen2.5-14B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8327
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.1832 | 0.0008 | 1 | 1.5919 |
0.656 | 0.5003 | 620 | 0.8327 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.1+cu124
- Datasets 3.0.1
- Tokenizers 0.20.3
- Downloads last month
- 0