Built with Axolotl

mistral-alpaca2k-3e

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the mhenrichsen/alpaca_2k_test dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8850

Training procedure

accelerate launch -m axolotl.cli.train examples/mistral/qlora.yml

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
1.392 0.0 1 1.2581
0.912 0.15 36 0.7686
0.7114 0.3 72 0.7590
0.7849 0.45 108 0.7561
0.693 0.61 144 0.7546
0.686 0.76 180 0.7538
0.782 0.91 216 0.7524
0.5691 1.06 252 0.7700
0.5295 1.21 288 0.7883
0.5313 1.36 324 0.7876
0.4994 1.52 360 0.7971
0.6007 1.67 396 0.7881
0.5459 1.82 432 0.7911
0.5194 1.97 468 0.7924
0.3376 2.12 504 0.8711
0.2983 2.27 540 0.8916
0.341 2.43 576 0.8891
0.2961 2.58 612 0.8861
0.2469 2.73 648 0.8860
0.3535 2.88 684 0.8850

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
20
Safetensors
Model size
7.24B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dvijay/mistral-alpaca2k-3e-01

Finetuned
(801)
this model