Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: microsoft/Phi-3.5-mini-instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: anthracite-org/stheno-filtered-v1.1
    type: sharegpt
    conversation: chatml
  - path: anthracite-org/nopm_claude_writing_fixed
    type: sharegpt
    conversation: chatml
  - path: Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
    type: sharegpt
    conversation: chatml
  - path: ResplendentAI/bluemoon
    type: sharegpt
    conversation: chatml
  - path: openerotica/freedom-rp
    type: sharegpt
    conversation: chatml
  - path: MinervaAI/Aesir-Preview
    type: sharegpt
    conversation: chatml
  - path: jeiku/jeikutxt
    type: completion
  - path: ResplendentAI/Sissification_Hypno_1k
    type: alpaca
  - path: ResplendentAI/theory_of_mind_fixed_output
    type: alpaca
  - path: ResplendentAI/Synthetic_Soul_1k
    type: alpaca

chat_template: chatml

val_set_size: 0.01
output_dir: ./outputs/out

adapter:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:

sequence_len: 8192
# sequence_len: 32768
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

wandb_project: phi
wandb_entity:
wandb_watch:
wandb_name: phi
wandb_log_model:

gradient_accumulation_steps: 32
micro_batch_size: 4
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00001
weight_decay: 0.05

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_ratio: 0.1
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 2

debug:
deepspeed: deepspeed_configs/zero3.json
fsdp:
fsdp_config:

special_tokens:
  pad_token: <|finetune_right_pad_id|>


outputs/out

This model is a fine-tuned version of microsoft/Phi-3.5-mini-instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 7.1048

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 256
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 8
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
15.986 0.0233 1 16.8119
9.6041 0.2567 11 9.1897
7.5864 0.5135 22 7.5221
7.2575 0.7702 33 7.2532
7.1368 1.0270 44 7.1665
7.078 1.2844 55 7.1249
7.0613 1.5417 66 7.1079
7.0599 1.7990 77 7.1048

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
3.82B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dumping-grounds/testmodel

Finetuned
(55)
this model