Diffusers documentation

Text-Guided Image-Inpainting

You are viewing v0.3.0 version. A newer version v0.32.1 is available.
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Text-Guided Image-Inpainting

The StableDiffusionInpaintPipeline lets you edit specific parts of an image by providing a mask and text prompt.

from io import BytesIO

from torch import autocast
import requests
import PIL

from diffusers import StableDiffusionInpaintPipeline


def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")


img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"

init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))

device = "cuda"
pipe = StableDiffusionInpaintPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16, use_auth_token=True
).to(device)

prompt = "a cat sitting on a bench"
with autocast("cuda"):
    images = pipe(prompt=prompt, init_image=init_image, mask_image=mask_image, strength=0.75).images

images[0].save("cat_on_bench.png")

You can also run this example on colab Open In Colab