Datasets documentation

Create a video dataset

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v3.2.0).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Create a video dataset

This guide will show you how to create a video dataset with VideoFolder and some metadata. This is a no-code solution for quickly creating a video dataset with several thousand videos.

You can control access to your dataset by requiring users to share their contact information first. Check out the Gated datasets guide for more information about how to enable this feature on the Hub.

VideoFolder

The VideoFolder is a dataset builder designed to quickly load a video dataset with several thousand videos without requiring you to write any code.

💡 Take a look at the Split pattern hierarchy to learn more about how VideoFolder creates dataset splits based on your dataset repository structure.

VideoFolder automatically infers the class labels of your dataset based on the directory name. Store your dataset in a directory structure like:

folder/train/dog/golden_retriever.mp4
folder/train/dog/german_shepherd.mp4
folder/train/dog/chihuahua.mp4

folder/train/cat/maine_coon.mp4
folder/train/cat/bengal.mp4
folder/train/cat/birman.mp4

Then users can load your dataset by specifying videofolder in load_dataset() and the directory in data_dir:

>>> from datasets import load_dataset

>>> dataset = load_dataset("videofolder", data_dir="/path/to/folder")

You can also use videofolder to load datasets involving multiple splits. To do so, your dataset directory should have the following structure:

folder/train/dog/golden_retriever.mp4
folder/train/cat/maine_coon.mp4
folder/test/dog/german_shepherd.mp4
folder/test/cat/bengal.mp4

If all video files are contained in a single directory or if they are not on the same level of directory structure, label column won’t be added automatically. If you need it, set drop_labels=False explicitly.

If there is additional information you’d like to include about your dataset, like text captions or bounding boxes, add it as a metadata.csv file in your folder. This lets you quickly create datasets for different computer vision tasks like text captioning or object detection. You can also use a JSONL file metadata.jsonl.

folder/train/metadata.csv
folder/train/0001.mp4
folder/train/0002.mp4
folder/train/0003.mp4

You can also zip your videos:

folder/metadata.csv
folder/train.zip
folder/test.zip
folder/valid.zip

Your metadata.csv file must have a file_name column which links video files with their metadata:

file_name,additional_feature
0001.mp4,This is a first value of a text feature you added to your videos
0002.mp4,This is a second value of a text feature you added to your videos
0003.mp4,This is a third value of a text feature you added to your videos

or using metadata.jsonl:

{"file_name": "0001.mp4", "additional_feature": "This is a first value of a text feature you added to your videos"}
{"file_name": "0002.mp4", "additional_feature": "This is a second value of a text feature you added to your videos"}
{"file_name": "0003.mp4", "additional_feature": "This is a third value of a text feature you added to your videos"}

If metadata files are present, the inferred labels based on the directory name are dropped by default. To include those labels, set drop_labels=False in load_dataset.

Video captioning

Video captioning datasets have text describing a video. An example metadata.csv may look like:

file_name,text
0001.mp4,This is a golden retriever playing with a ball
0002.mp4,A german shepherd
0003.mp4,One chihuahua

Load the dataset with VideoFolder, and it will create a text column for the video captions:

>>> dataset = load_dataset("videofolder", data_dir="/path/to/folder", split="train")
>>> dataset[0]["text"]
"This is a golden retriever playing with a ball"

Upload dataset to the Hub

Once you’ve created a dataset, you can share it to the using huggingface_hub for example. Make sure you have the huggingface_hub library installed and you’re logged in to your Hugging Face account (see the Upload with Python tutorial for more details).

Upload your dataset with huggingface_hub.HfApi.upload_folder:

from huggingface_hub import HfApi
api = HfApi()

api.upload_folder(
    folder_path="/path/to/local/dataset",
    repo_id="username/my-cool-dataset",
    repo_type="dataset",
)

WebDataset

The WebDataset format is based on TAR archives and is suitable for big video datasets. Indeed you can group your videos in TAR archives (e.g. 1GB of videos per TAR archive) and have thousands of TAR archives:

folder/train/00000.tar
folder/train/00001.tar
folder/train/00002.tar
...

In the archives, each example is made of files sharing the same prefix:

e39871fd9fd74f55.mp4
e39871fd9fd74f55.json
f18b91585c4d3f3e.mp4
f18b91585c4d3f3e.json
ede6e66b2fb59aab.mp4
ede6e66b2fb59aab.json
ed600d57fcee4f94.mp4
ed600d57fcee4f94.json
...

You can put your videos labels/captions/features using JSON or text files for example.

For more details on the WebDataset format and the python library, please check the WebDataset documentation.

Load your WebDataset and it will create on column per file suffix (here “mp4” and “json”):

>>> from datasets import load_dataset

>>> dataset = load_dataset("webdataset", data_dir="/path/to/folder", split="train")
>>> dataset[0]["json"]
{"bbox": [[302.0, 109.0, 73.0, 52.0]], "categories": [0]}
< > Update on GitHub